Remote Sensing | |
A Comprehensive Assessment of Climate Change and Coastal Inundation through Satellite-Derived Datasets: A Case Study of Sabang Island, Indonesia | |
Sigamani Panneer1  Venkatesh Ravichandran2  Charlotte E. Lyddon3  Karuppusamy Balasubramani4  Kumar Arun Prasad4  Peng Huang5  Robert Ramesh Babu Pushparaj6  Muhammad Nizar7  Komali Kantamaneni8  Peter Robins9  David Christie9  | |
[1] Centre for Happiness, Department of Social Work, School of Social Sciences & Humanities, Central University of Tamil Nadu, Thiruvarur 610005, India;Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India;Department of Geography and Planning, University of Liverpool, Liverpool L69 7ZT, UK;Department of Geography, Central University of Tamil Nadu, Thiruvarur 610005, India;Department of Materials, University of Manchester, Manchester M13 9PL, UK;Department of Social Work, School of Social Sciences & Humanities, Central University of Tamil Nadu, Thiruvarur 610005, India;Environmental Engineering Department, Universitas Serambi Mekkah, Banda Aceh 23246, Indonesia;Faculty of Science and Technology, University of Central Lancashire, Preston PR1 2HE, UK;School of Ocean Sciences, Bangor University, Menai Bridge LL59 5AB, UK; | |
关键词: Sabang Island; Indonesia; climate change; coastal inundation; sea level rise; vulnerability; | |
DOI : 10.3390/rs14122857 | |
来源: DOAJ |
【 摘 要 】
Climate-change-induced hazards are negatively affecting the small islands across Indonesia. Sabang Island is one of the most vulnerable small islands due to the rising sea levels and increasing coastal inundation which threaten the low-lying coastal areas with and without coastal defences. However, there is still a lack of studies concerning the long-term trends in climatic variables and, consequently, sea level changes in the region. Accordingly, the current study attempts to comprehensively assess sea level changes and coastal inundation through satellite-derived datasets and model-based products around Sabang Island, Indonesia. The findings of the study show that the temperature (both minimum and maximum) and rainfall of the island are increasing by ~0.01 °C and ~11.5 mm per year, respectively. The trends of temperature and rainfall are closely associated with vegetative growth; an upward trend in the dense forest is noticed through the enhanced vegetation index (EVI). The trend analysis of satellite altimeter datasets shows that the sea level is increasing at a rate of 6.6 mm/year. The DEM-based modelling shows that sea level rise poses the greatest threat to coastal habitations and has significantly increased in recent years, accentuated by urbanisation. The GIS-based model results predict that about half of the coastal settlements (2.5 sq km) will be submerged completely within the next 30 years, provided the same sea level rise continues. The risk of coastal inundation is particularly severe in Sabang, the largest town on the island. The results allow regional, sub-regional, and local comparisons that can assess variations in climate change, sea level rise, coastal inundation, and associated vulnerabilities.
【 授权许可】
Unknown