期刊论文详细信息
Frontiers in Immunology
Pathological Significance and Prognostic Value of Surfactant Protein D in Cancer
Uday Kishore1  Alessandro Mangogna2  Giuseppe Ricci3  Fabrizio Zanconati3  Federico Romano4  Chiara Agostinis4  Ines Ferrara5  Claudio Tripodo5  Roberta Bulla5  Alessandro Gulino5  Beatrice Belmonte5 
[1] Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom;Department of Life Sciences, University of Trieste, Trieste, Italy;Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy;Institute for Maternal and Child Health, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Burlo Garofolo, Trieste, Italy;Tumor Immunology Unit, Department of Health Sciences, Human Pathology Section, University of Palermo, Palermo, Sicily, Italy;
关键词: innate immunity;    surfactant protein D;    immune surveillance;    bioinformatics analysis;    immunohistochemistry;    cancers;   
DOI  :  10.3389/fimmu.2018.01748
来源: DOAJ
【 摘 要 】

Surfactant protein D (SP-D) is a pattern recognition molecule belonging to the Collectin (collagen-containing C-type lectin) family that has pulmonary as well as extra-pulmonary existence. In the lungs, it is a well-established opsonin that can agglutinate a range of microbes, and enhance their clearance via phagocytosis and super-oxidative burst. It can interfere with allergen–IgE interaction and suppress basophil and mast cell activation. However, it is now becoming evident that SP-D is likely to be an innate immune surveillance molecule against tumor development. SP-D has been shown to induce apoptosis in sensitized eosinophils derived from allergic patients and a leukemic cell line via p53 pathway. Recently, SP-D has been shown to suppress lung cancer progression via interference with the epidermal growth factor signaling. In addition, a truncated form of recombinant human SP-D has been reported to induce apoptosis in pancreatic adenocarcinoma via Fas-mediated pathway in a p53-independent manner. To further establish a correlation between SP-D presence/levels and normal and cancer tissues, we performed a bioinformatics analysis, using Oncomine dataset and the survival analysis platforms Kaplan–Meier plotter, to assess if SP-D can serve as a potential prognostic marker for human lung cancer, in addition to human gastric, breast, and ovarian cancers. We also analyzed immunohistochemically the presence of SP-D in normal and tumor human tissues. We conclude that (1) in the lung, gastric, and breast cancers, there is a lower expression of SP-D than normal tissues; (2) in ovarian cancer, there is a higher expression of SP-D than normal tissue; and (3) in lung cancer, the presence of SP-D could be associated with a favorable prognosis. On the contrary, at non-pulmonary sites such as gastric, breast, and ovarian cancers, the presence of SP-D could be associated with unfavorable prognosis. Correlation between the levels of SP-D and overall survival requires further investigation. Our analysis involves a large number of dataset; therefore, any trend observed is reliable. Despite apparent complexity within the results, it is evident that cancer tissues that produce less levels of SP-D compared to their normal tissue counterparts are probably less susceptible to SP-D-mediated immune surveillance mechanisms via infiltrating immune cells.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次