Journal of Marine Science and Engineering | |
Prediction of Significant Wave Height in Offshore China Based on the Machine Learning Method | |
Zhijie Feng1  Po Hu2  Shuiqing Li2  Dongxue Mo2  | |
[1] College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266580, China;Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road, 7, Qingdao 266071, China; | |
关键词: wave height; recurrent neural network; long short-term memory network; GRU; EMD; | |
DOI : 10.3390/jmse10060836 | |
来源: DOAJ |
【 摘 要 】
Accurate wave prediction can help avoid disasters. In this study, the significant wave height (SWH) prediction performances of the recurrent neural network (RNN), long short-term memory network (LSTM), and gated recurrent unit network (GRU) were compared. The 10 m u-component of wind (U10), 10 m v-component of wind (V10), and SWH of the previous 24 h were used as input parameters to predict the SWHs of the future 1, 3, 6, 12, and 24 h. The SWH prediction model was established at three different sites located in the Bohai Sea, the East China Sea, and the South China Sea, separately. The experimental results show that the performance of LSTM and GRU networks based on the gating mechanism was better than that of traditional RNNs, and the performances of the LSTM and GRU networks were comparable. The EMD method was found to be useful in the improvement of the LSTM network to forecast the significant wave heights of 12 and 24 h.
【 授权许可】
Unknown