Sensors | |
Data Association for Multi-Object Tracking via Deep Neural Networks | |
Kwangjin Yoon1  Moongu Jeon1  Young-Chul Yoon1  Du Yong Kim2  | |
[1] School of Electrical Engineering and Computer Science, Gwanju Institute of Science and Technology, Gwangju 61005, Korea;School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; | |
关键词: multi-object tracking; data association; deep neural network; long short-term memory network; | |
DOI : 10.3390/s19030559 | |
来源: DOAJ |
【 摘 要 】
With recent advances in object detection, the tracking-by-detection method has become mainstream for multi-object tracking in computer vision. The tracking-by-detection scheme necessarily has to resolve a problem of data association between existing tracks and newly received detections at each frame. In this paper, we propose a new deep neural network (DNN) architecture that can solve the data association problem with a variable number of both tracks and detections including false positives. The proposed network consists of two parts: encoder and decoder. The encoder is the fully connected network with several layers that take bounding boxes of both detection and track-history as inputs. The outputs of the encoder are sequentially fed into the decoder which is composed of the bi-directional Long Short-Term Memory (LSTM) networks with a projection layer. The final output of the proposed network is an association matrix that reflects matching scores between tracks and detections. To train the network, we generate training samples using the annotation of Stanford Drone Dataset (SDD). The experiment results show that the proposed network achieves considerably high recall and precision rate as the binary classifier for the assignment tasks. We apply our network to track multiple objects on real-world datasets and evaluate the tracking performance. The performance of our tracker outperforms previous works based on DNN and comparable to other state-of-the-art methods.
【 授权许可】
Unknown