期刊论文详细信息
BMC Bioinformatics
Additional Neural Matrix Factorization model for computational drug repositioning
Xinxing Yang1  lbrahim Zamit1  Jieyue He1  Yu Liu1 
[1] School of Computer Science and Engineering, Key Lab of Computer Network & Information Integration, MOE, Southeast University;
关键词: Drug repositioning;    Data mining;    Matrix factorization;    Neural network;   
DOI  :  10.1186/s12859-019-2983-2
来源: DOAJ
【 摘 要 】

Abstract Background Computational drug repositioning, which aims to find new applications for existing drugs, is gaining more attention from the pharmaceutical companies due to its low attrition rate, reduced cost, and shorter timelines for novel drug discovery. Nowadays, a growing number of researchers are utilizing the concept of recommendation systems to answer the question of drug repositioning. Nevertheless, there still lie some challenges to be addressed: 1) Learning ability deficiencies; the adopted model cannot learn a higher level of drug-disease associations from the data. 2) Data sparseness limits the generalization ability of the model. 3)Model is easy to overfit if the effect of negative samples is not taken into consideration. Results In this study, we propose a novel method for computational drug repositioning, Additional Neural Matrix Factorization (ANMF). The ANMF model makes use of drug-drug similarities and disease-disease similarities to enhance the representation information of drugs and diseases in order to overcome the matter of data sparsity. By means of a variant version of the autoencoder, we were able to uncover the hidden features of both drugs and diseases. The extracted hidden features will then participate in a collaborative filtering process by incorporating the Generalized Matrix Factorization (GMF) method, which will ultimately give birth to a model with a stronger learning ability. Finally, negative sampling techniques are employed to strengthen the training set in order to minimize the likelihood of model overfitting. The experimental results on the Gottlieb and Cdataset datasets show that the performance of the ANMF model outperforms state-of-the-art methods. Conclusions Through performance on two real-world datasets, we believe that the proposed model will certainly play a role in answering to the major challenge in drug repositioning, which lies in predicting and choosing new therapeutic indications to prospectively test for a drug of interest.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次