期刊论文详细信息
BMC Bioinformatics
A phenome-guided drug repositioning through a latent variable model
Halil Bisgin1  Zhichao Liu1  Hong Fang2  Reagan Kelly1  Xiaowei Xu3  Weida Tong1 
[1] Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
[2] Office of Scientific Coordination, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
[3] Department of Information Science, University of Arkansas at Little Rock, 2801 S. University Ave., Little Rock, AR 72204-1099, USA
关键词: Indications;    Side effects;    Phenome;    Data mining;    Latent dirichlet allocation;    Bayesian methods;    Drug repositioning;   
Others  :  1087525
DOI  :  10.1186/1471-2105-15-267
 received in 2014-02-26, accepted in 2014-07-21,  发布年份 2014
PDF
【 摘 要 】

Background

The phenome represents a distinct set of information in the human population. It has been explored particularly in its relationship with the genome to identify correlations for diseases. The phenome has been also explored for drug repositioning with efforts focusing on the search space for the most similar candidate drugs. For a comprehensive analysis of the phenome, we assumed that all phenotypes (indications and side effects) were inter-connected with a probabilistic distribution and this characteristic may offer an opportunity to identify new therapeutic indications for a given drug. Correspondingly, we employed Latent Dirichlet Allocation (LDA), which introduces latent variables (topics) to govern the phenome distribution.

Results

We developed our model on the phenome information in Side Effect Resource (SIDER). We first developed a LDA model optimized based on its recovery potential through perturbing the drug-phenotype matrix for each of the drug-indication pairs where each drug-indication relationship was switched to “unknown” one at the time and then recovered based on the remaining drug-phenotype pairs. Of the probabilistically significant pairs, 70% was successfully recovered. Next, we applied the model on the whole phenome to narrow down repositioning candidates and suggest alternative indications. We were able to retrieve approved indications of 6 drugs whose indications were not listed in SIDER. For 908 drugs that were present with their indication information, our model suggested alternative treatment options for further investigations. Several of the suggested new uses can be supported with information from the scientific literature.

Conclusions

The results demonstrated that the phenome can be further analyzed by a generative model, which can discover probabilistic associations between drugs and therapeutic uses. In this regard, LDA serves as an enrichment tool to explore new uses of existing drugs by narrowing down the search space.

【 授权许可】

   
2014 Bisgin et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150117013128911.pdf 1557KB PDF download
Figure 4. 36KB Image download
Figure 3. 49KB Image download
Figure 2. 55KB Image download
Figure 1. 194KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Mahner M, Kary M: What exactly are genomes, genotypes and phenotypes? And what about phenomes? J Theor Biol 1997, 186(1):55-63.
  • [2]Freimer N, Sabatti C: The Human Phenome Project. Nat Genet 2003, 34(1):15-21.
  • [3]Rzhetsky A, Wajngurt D, Park N, Zheng T: Probing genetic overlap among complex human phenotypes. Proc Natl Acad Sci U S A 2007, 104(28):11694-11699.
  • [4]van Driel MA, Bruggeman J, Vriend G, Brunner HG, Leunissen JA: A text-mining analysis of the human phenome. Eur J Hum Genet 2006, 14(5):535-542.
  • [5]Wu X, Jiang R, Zhang MQ, Li S: Network-based global inference of human disease genes. Mol Syst Biol 2008, 4:189.
  • [6]Wu X, Liu Q, Jiang R: Align human interactome with phenome to identify causative genes and networks underlying disease families. Bioinformatics 2009, 25(1):98-104.
  • [7]Dudley JT, Deshpande T, Butte AJ: Exploiting drug disease relationships for computational drug repositioning. Brief Bioinform 2011, 12(4):303-311.
  • [8]Ekins S, Williams AJ, Krasowski MD, Freundlich JS: In silico repositioning of approved drugs for rare and neglected diseases. Drug Discov Today 2011, 16(7–8):298-310.
  • [9]Iorio F, Bosotti R, Scacheri E, Belcastro V, Mithbaokar P, Ferriero R, Murino L, Tagliaferri R, Brunetti-Pierri N, Isacchi A, Bernardoa D: Discovery of drug mode of action and drug repositioning from transcriptional responses. Proc Natl Acad Sci 2010, 107(33):14621-14626.
  • [10]Keiser MJ, Setola V, Irwin JJ, Laggner C, Abbas AI, Hufeisen SJ, Jensen NH, Kuijer MB, Matos RC, Tran TB, Whaley R, Glennon RA, Hert J, Thomas KLH, Edwards DD, Shoichet BK, Roth BL: Predicting new molecular targets for known drugs. Nature 2009, 462(7270):175-181.
  • [11]Sardana D, Zhu C, Zhang M, Gudivada RC, Jegga AG: Yang L. Drug repositioning for orphan diseases. Briefings in Bioinformatics: Jegga AG; 2011.
  • [12]Liu Z, Fang H, Reagan K, Xu X, Mendrick DL, Slikker W Jr, Tong W: In silico drug repositioning: what we need to know. Drug Discov Today 2013, 18(3–4):110-115.
  • [13]Yang L, Agarwal P: Systematic Drug Repositioning Based on Clinical Side-Effects. PLoS ONE 2011, 6(12):e28025.
  • [14]Napolitano F, Zhao Y, Moreira V, Tagliaferri R, Kere J, D’Amato M, Greco D: Drug repositioning: a machine-learning approach through data integration. J Cheminformatics C7 - 30 2013, 5(1):1-9.
  • [15]Sirota M, Dudley JT, Kim J, Chiang AP, Morgan AA, Sweet-Cordero A, Sage J, Butte AJ: Discovery and preclinical validation of drug indications using compendia of public gene expression data. Sci Transl Med 2011, 3(96):96ra77.
  • [16]Dudley JT, Sirota M, Shenoy M, Pai RK, Roedder S, Chiang AP, Morgan AA, Sarwal MM, Pasricha PJ, Butte AJ: Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease. Sci Transl Med 2011, 3(96):96ra76.
  • [17]Campillos M, Kuhn M, Gavin A-C, Jensen LJ, Bork P: Drug Target Identification Using Side-Effect Similarity. Science 2008, 321(5886):263-266.
  • [18]Bisgin H, Liu Z, Kelly R, Fang H, Xu X, Tong W: Investigating drug repositioning opportunities in FDA drug labels through topic modeling. BMC Bioinformatics 2012, 13(Suppl 14):S6.
  • [19]Kuhn M, Campillos M, Letunic I, Jensen LJ, Bork P: A side effect resource to capture phenotypic effects of drugs. Mol Syst Biol 2010, 6:6.
  • [20]Blei D, Ng A, Jordan M: Latent Dirichlet Allocation. J Mach Learn Res 2003, 3:993-1022.
  • [21]Bisgin H, Liu Z, Fang H, Xu X, Tong W: Mining FDA drug labels using an unsupervised learning technique - topic modeling. BMC Bioinformatics 2011, 12(Suppl 10):S11.
  • [22]He B, Tang J, Ding Y, Wang H, Sun Y, Shin JH, Chen B, Moorthy G, Qiu J, Desai P, Wild D: Mining Relational Paths in Integrated Biomedical Data. PLoS ONE 2011, 6(12):e27506.
  • [23]Wang H, Ding Y, Tang J, Dong X, He B, Qiu J, Wild DJ: Finding Complex Biological Relationships in Recent PubMed Articles Using Bio-LDA. PLoS ONE 2011, 6(3):e17243.
  • [24]Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C, Neveu V, Djoumbou Y, Eisner R, Guo AC, Wishart DS: DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res 2011, 39(Database issue):D1035-1041.
  • [25]Hollander E, Nunes E, DeCaria CM, Quitkin FM, Cooper T, Wager S, Klein DF: Dopaminergic sensitivity and cocaine abuse: Response to apomorphine. Psychiatry Res 1990, 33(2):161-169.
  • [26]Deguchi M, Isobe Y, Matsukawa S, Yamaguchi A, Nakagawara G: Usefulness of metyrapone treatment to suppress cancer metastasis facilitated by surgical stress. Surgery 1998, 123(4):440-449.
  • [27]Taddio A, Ohlsson K, Ohlsson A: Lidocaine-prilocaine cream for analgesia during circumcision in newborn boys. Cochrane Database Syst Rev 2000., 2CD000496
  • [28]Ibrahim AE, Ghoneim MM, Kharasch ED, Epstein RH, Groudine SB, Ebert TJ, Binstock WB, Philip BK, Sevoflurane Sedation Study G: Speed of recovery and side-effect profile of sevoflurane sedation compared with midazolam. Anesthesiology 2001, 94(1):87-94.
  • [29]Servin FS, Raeder JC, Merle JC, Wattwil M, Hanson AL, Lauwers MH, Aitkenhead A, Marty J, Reite K, Martisson S, Wostyn L: Remifentanil sedation compared with propofol during regional anaesthesia. Acta Anaesthesiol Scand 2002, 46(3):309-315.
  • [30]Wangeman CP: Methohexital sodium. Anesth Analg 1962, 41:307-313.
  • [31]Sackey PV, Martling CR, Radell PJ: Three cases of PICU sedation with isoflurane delivered by the ‘AnaConDa’. Paediatr Anaesth 2005, 15(10):879-885.
  • [32]Hacimuftuoglu AAULB, No:7, Erzurum, 25240, TR): The use of disulfiram in the treatment of gastrointestinal system ulcers. Hacimuftuoglu, Ahmet (Ataturk Universitesi Loj. 48. Blok, No:7, Erzurum, 25240, TR) 2008.
  • [33]Drake ME Jr, Pakalnis A, Denio LS, Phillips B: Amantadine hydrochloride for refractory generalized epilepsy in adults. Acta Neurol Belg 1991, 91(3):159-164.
  • [34]DailyMed, National Library of Medicine, National Institutes of Healthhttp://dailymed.nlm.nih.gov webcite
  • [35]De Deyn PP, Drenth AF, Kremer BP, Oude Voshaar RC, Van Dam D: Aripiprazole in the treatment of Alzheimer’s disease. Expert Opin Pharmacother 2013, 14(4):459-474.
  • [36]Tucker RM, Denning DW, Dupont B, Stevens DA: Itraconazole therapy for chronic coccidioidal meningitis. Ann Intern Med 1990, 112(2):108-112.
  • [37]Kapicioglu S, Gokce E, Kapicioglu Z, Ovali E: Treatment of migraine attacks with a long-acting somatostatin analogue (octreotide, SMS 201-995). Cephalalgia 1997, 17(1):27-30.
  • [38]Loo CY, Tan HJ, Teh HS, Raymond AA: Randomised, open label, controlled trial of celecoxib in the treatment of acute migraine. Singapore Med J 2007, 48(9):834-839.
  • [39]Myles AB, Bacon PA, Williams KA: Mefenamic acid in rheumatoid arthritis. Ann Rheum Dis 1967, 26(6):494-498.
  • [40]Kercsmar CM, Stern RC, Reed MD, Myers CM, Murdell D, Blumer JL: Ceftazidime in cystic fibrosis: pharmacokinetics and therapeutic response. J Antimicrob Chemother 1983, 12(Suppl A):289-295.
  • [41]Kaczmarczyk-Sedlak I, Folwarczna J, Trzeciak HI: Thalidomide affects the skeletal system of ovariectomized rats. Pharmacol Rep 2009, 61(3):529-538.
  • [42]Kaczmarczyk-Sedlak I, Zych M, Rotko K, Sedlak L: Effects of thalidomide on the development of bone damage caused by prednisolone in rats. Pharmacol Rep 2012, 64(2):386-395.
  • [43]Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF, Altman RB, Klein TE: Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther 2012, 92(4):414-417.
  • [44]Morita K, Gotohda T, Arimochi H, Lee MS, Her S: Histone deacetylase inhibitors promote neurosteroid-mediated cell differentiation and enhance serotonin-stimulated brain-derived neurotrophic factor gene expression in rat C6 glioma cells. J Neurosci Res 2009, 87(11):2608-2614.
  文献评价指标  
  下载次数:22次 浏览次数:6次