期刊论文详细信息
Autex Research Journal
Surface Morphology of Polyimide Thin Film Dip-Coated on Polyester Filament for Dielectric Layer in Fibrous Organic Field Effect Transistor
Bruneel Els1  Van Driessche Isabel2  Van Langenhove Lieva3  Rambausek Lina4 
[1] Ghent University - Department of Inorganic and Physical Chemistry, Ghent, Belgium, Krijgslaan 281 S3, 9000 Ghent, tel. +32 9 264 44 47, fax +32 9 264 49 83;Ghent University - Department of Inorganic and Physical Chemistry, Ghent, Belgium, Krijgslaan 281 S3, 9000 Ghent, tel. +32 9 264 44 47, fax +32 9 264 49 8;Ghent University - Department of Textiles, Ghent, Belgium, Technologiepark 907, 9052 Zwijnaarde, tel +32 9 264 54 06, fax +32 9 264 58 31;Ghent University - Department of Textiles, Ghent, Belgium, Technologiepark 907, 9052 Zwijnaarde, tel +32 9 264 54 06, fax +32 9 264 58 3;
关键词: polyimide;    dielectric;    organic field effect transistor;    filament;    dip-coating;   
DOI  :  10.2478/aut-2014-0012
来源: DOAJ
【 摘 要 】

The idea of wearable electronics automatically leads to the concept of integrating electronic functions on textile substrates. Since this substrate type implies certain challenges in comparison with their rigid electronic companions, it is of utmost importance to investigate the application of materials for generating the electronic functions on the textile substrate. Only when interaction of materials and textile substrate is fully understood, the electronic function can be generated on the textile without changing the textile’s properties, being flexible or stretchable. This research deals with the optimization of the dielectric layer in a fibrous organic field effect transistor (OFET). A transistor can act as an electrical switch in a circuit. In this work, the polyimide layer was dip-coated on a copper-coated polyester filament. After thoroughly investigating the process conditions, best results with minimal thickness and roughness at full insulation could be achieved at a dip-coating speed of 50 mm/min. The polyimide solution was optimal at 15w% and the choice for the solvent NMP was made. In this paper, details on the pre-treatment methods, choice of solvent and dip-coating speed and their effect on layer morphology and thickness, electrical properties and roughness are reported. Results show that the use of polyimide as a dielectric layer in the architecture of a fibrous OFET is promising. Further research deals with the application of the semiconductor layer within the mentioned architecture, to finally build an OFET on a filament for application in smart textiles.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次