期刊论文详细信息
Materials
Numerical Study on the Dependency of Microstructure Morphologies of Pulsed Laser Deposited TiN Thin Films and the Strain Heterogeneities during Mechanical Testing
Grzegorz Szwachta1  Grzegorz Cios1  Lukasz Madej2  Piotr Bała2  Konrad Perzynski2 
[1] Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Mickiewicza 30 Ave., 30-059 Krakow, Poland;Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Mickiewicza 30 Ave., 30-059 Krakow, Poland;
关键词: pulsed laser deposition;    thin films;    digital material representation;    kinetic Monte Carlo;   
DOI  :  10.3390/ma14071705
来源: DOAJ
【 摘 要 】

Numerical study of the influence of pulsed laser deposited TiN thin films’ microstructure morphologies on strain heterogeneities during loading was the goal of this research. The investigation was based on the digital material representation (DMR) concept applied to replicate an investigated thin film’s microstructure morphology. The physically based pulsed laser deposited model was implemented to recreate characteristic features of a thin film microstructure. The kinetic Monte Carlo (kMC) approach was the basis of the model in the first part of the work. The developed kMC algorithm was used to generate thin film’s three-dimensional representation with its columnar morphology. Such a digital model was then validated with the experimental data from metallographic analysis of laboratory deposited TiN(100)/Si. In the second part of the research, the kMC generated DMR model of thin film was incorporated into the finite element (FE) simulation. The 3D film’s morphology was discretized with conforming finite element mesh, and then incorporated as a microscale model into the macroscale finite element simulation of nanoindentation test. Such a multiscale model was finally used to evaluate the development of local deformation heterogeneities associated with the underlying microstructure morphology. In this part, the capabilities of the proposed approach were clearly highlighted.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次