期刊论文详细信息
Frontiers in Bioengineering and Biotechnology
The Role of Microenvironmental Cues and Mechanical Loading Milieus in Breast Cancer Cell Progression and Metastasis
Tasneem Bouzid1  Brandon D. Riehl1  Eunju Kim1  Jung Yul Lim2 
[1] Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States;Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, United States;
关键词: breast cancer;    metastasis;    substrate microenvironments;    mechanical loading;    mechanotransduction;    cell progression;   
DOI  :  10.3389/fbioe.2020.608526
来源: DOAJ
【 摘 要 】

Cancer can disrupt the microenvironments and mechanical homeostatic actions in multiple scales from large tissue modification to altered cellular signaling pathway in mechanotransduction. In this review, we highlight recent progresses in breast cancer cell mechanobiology focusing on cell-microenvironment interaction and mechanical loading regulation of cells. First, the effects of microenvironmental cues on breast cancer cell progression and metastasis will be reviewed with respect to substrate stiffness, chemical/topographic substrate patterning, and 2D vs. 3D cultures. Then, the role of mechanical loading situations such as tensile stretch, compression, and flow-induced shear will be discussed in relation to breast cancer cell mechanobiology and metastasis prevention. Ultimately, the substrate microenvironment and mechanical signal will work together to control cancer cell progression and metastasis. The discussions on breast cancer cell responsiveness to mechanical signals, from static substrate and dynamic loading, and the mechanotransduction pathways involved will facilitate interdisciplinary knowledge transfer, enabling further insights into prognostic markers, mechanically mediated metastasis pathways for therapeutic targets, and model systems required to advance cancer mechanobiology.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:4次