Energies | |
Generic and Open-Source Exergy Analysis—Extending the Simulation Framework TESPy | |
Francesco Witte1  Ilja Tuschy1  George Tsatsaronis2  Mathias Hofmann2  Julius Meier2  | |
[1] Department of Energy and Biotechnology, Flensburg University of Applied Sciences, Kanzleistraße 91-93, 24943 Flensburg, Germany;Institute for Energy Engineering, Technische Universität Berlin, Marchstraße 18, 10587 Berlin, Germany; | |
关键词: exergy analysis; simulation; free and open-source software; thermal conversion processes; Python; generic topologies; | |
DOI : 10.3390/en15114087 | |
来源: DOAJ |
【 摘 要 】
Exergy-based methods support the identification of thermodynamic inefficiencies and the discovery of optimization potentials in thermal engineering applications. Although a large variety of simulation software is available in this field, most do not offer an integrated solution for exergy analysis. While there are commercial products on the market with such capabilities, their access for research and educational purposes is limited. The presented open-source software offers an integrated and fully automated exergy analysis tool for thermal conversion processes. In a first step, physical exergy is implemented, and the tool is then applied to three different example plants to highlight its capabilities and validate the implementation: A solar thermal power plant, a supercritical CO2 power cycle, and an air refrigeration cycle. The respective models and the results of the analyses are presented briefly. By providing the results in modern data structures, they are easily accessible and postprocessible. Future work will include chemical exergy to enable analyses of applications with conversion of matter. Additionally, the implementation of the exergoeconomic analysis and optimization is envisaged.
【 授权许可】
Unknown