IEEE Photonics Journal | |
A Compact Low-Power 320-Gb/s WDM Transmitter Based on Silicon Microrings | |
Zhe Xuan1  Ran Ding2  Keren Bergman3  Qi Li4  Andy Eu-Jin Lim5  Guo-Qiang Lo6  Yangjin Ma7  Yisu Yang7  Tom Baehr-Jones7  Yang Liu7  Michael Hochberg7  | |
[1] |
|
关键词: Integrated optics devices; modulators; integrated optoelectronic circuits; | |
DOI : 10.1109/JPHOT.2014.2326656 | |
来源: DOAJ |
【 摘 要 】
We demonstrate a compact and low-power wavelength-division multiplexing transmitter near a 1550-nm wavelength using silicon microrings. The transmitter is implemented on a silicon-on-insulator photonics platform with a compact footprint of 0.5 mm2. The transmitter incorporates 8 wavelength channels with 200-GHz spacing. Each channel achieved error-free operation at 40 Gb/s, resulting in an aggregated data transmission capability of 320 Gb/s. To our knowledge, this is the highest aggregated data rate demonstrated in silicon wavelength-division multiplexing transmitters. Owing to the small device capacitance and the efficient pn-junction modulator design, the transmitter achieves low energy-per-bit values of 36 fJ/bit under 2.4 Vpp drive and 144 fJ/bit under 4.8 Vpp drive. Comparisons are made to a commercial lithium niobate modulator in terms of bit-error-rate versus optical signal-to-noise ratio.
【 授权许可】
Unknown