期刊论文详细信息
Sensors
A Reliable BioFET Immunosensor for Detection of p53 Tumour Suppressor in Physiological-Like Environment
Chiara Baldacchini1  AntoninoFrancesco Montanarella1  AnnaRita Bizzarri1  Salvatore Cannistraro1  MariaAssunta Signore2  Luca Francioso2 
[1] Biophysics and Nanoscience Centre, DEB, Università degli Studi della Tuscia, 01100 Viterbo, Italy;CNR-IMM Institute for Microelectronics and Microsystems, Via Monteroni, University Campus, Bld. A/3, 73100 Lecce, Italy;
关键词: p53;    EGFET;    immunosensors;    BioFET;   
DOI  :  10.3390/s20216364
来源: DOAJ
【 摘 要 】

The concentration of wild-type tumour suppressor p53wt in cells and blood has a clinical significance for early diagnosis of some types of cancer. We developed a disposable, label-free, field-effect transistor-based immunosensor (BioFET), able to detect p53wt in physiological buffer solutions, over a wide concentration range. Microfabricated, high-purity gold electrodes were used as single-use extended gates (EG), which avoid direct interaction between the transistor gate and the biological solution. Debye screening, which normally hampers target charge effect on the FET gate potential and, consequently, on the registered FET drain-source current, at physiological ionic strength, was overcome by incorporating a biomolecule-permeable polymer layer on the EG electrode surface. Determination of an unknown p53wt concentration was obtained by calibrating the variation of the FET threshold voltage versus the target molecule concentration in buffer solution, with a sensitivity of 1.5 ± 0.2 mV/decade. The BioFET specificity was assessed by control experiments with proteins that may unspecifically bind at the EG surface, while 100pM p53wt concentration was established as limit of detection. This work paves the way for fast and highly sensitive tools for p53wt detection in physiological fluids, which deserve much interest in early cancer diagnosis and prognosis.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次