期刊论文详细信息
Toxins
Lactobacillus bulgaricus or Lactobacillus rhamnosus Suppresses NF-κB Signaling Pathway and Protects against AFB1-Induced Hepatitis: A Novel Potential Preventive Strategy for Aflatoxicosis?
Ruirui Li1  Huanmin Yang1  Yuanyuan Chen1  Qiaocheng Chang1  Zhihao Dong1  Chuang Xu1 
[1] College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing High-Tech Industrial Development Zone, Daqing 163319, China;
关键词: aflatoxin B1;    liver;    Lactobacillus bulgaricus;    Lactobacillus rhamnosus;    NF-κB;    inflammation;   
DOI  :  10.3390/toxins11010017
来源: DOAJ
【 摘 要 】

Aflatoxin B1 (AFB1), a mycotoxin found in food and feed, is immunotoxic to animals and poses significant threat to the food industry and animal production. The primary target of AFB1 is the liver. To overcome aflatoxin toxicity, probiotic-mediated detoxification has been proposed. In the present study, to investigate the protective effects and molecular mechanisms of Lactobacillus bulgaricus or Lactobacillus rhamnosus against liver inflammatory responses to AFB1, mice were administered with AFB1 (300 μg/kg) and/or Lactobacillus intragastrically for 8 weeks. AML12 cells were cultured and treated with AFB1, BAY 11-7082 (an NF-κB inhibitor), and different concentrations of L. bulgaricus or L. rhamnosus. The body weight, liver index, histopathological changes, biochemical indices, cytokines, cytotoxicity, and activation of the NF-κB signaling pathway were measured. AFB1 exposure caused changes in liver histopathology and biochemical functions, altered inflammatory response, and activated the NF-κB pathway. Supplementation of L. bulgaricus or L. rhamnosus significantly prevented AFB1-induced liver injury and alleviated histopathological changes and inflammatory response by decreasing NF-κB p65 expression. The results of in vitro experiments revealed that L. rhamnosus evidently protected against AFB1-induced inflammatory response and decreased NF-κB p65 expression when compared with L. bulgaricus. These findings indicated that AFB1 exposure can cause inflammatory response by inducing hepatic injury, and supplementation of L. bulgaricus or L. rhamnosus can produce significant protective effect against AFB1-induced liver damage and inflammatory response by regulating the activation of the NF-κB signaling pathway.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:3次