期刊论文详细信息
Cell Communication and Signaling
Infrapatellar fat pad adipose-derived stem cells co-cultured with articular chondrocytes from osteoarthritis patients exhibit increased chondrogenic gene expression
Kendrick To1  Karim Fekir2  Roger A. Brooks2  Christopher C. H. Mak3  Wasim S. Khan4 
[1] Department of Pharmacology, University of Cambridge;Division of Trauma and Orthopaedic Surgery, Department of Surgery, Addenbrooke’s Hospital, University of Cambridge;School of Clinical Medicine;Versus Arthritis Tissue Engineering and Regenerative Therapies Centre, Division of Trauma and Orthopaedic Surgery, Department of Surgery, Addenbrooke’s Hospital, University of Cambridge;
关键词: Mesenchymal stromal cells;    Co-culture;    Chondrogenesis;    Cartilage;    Cell-based therapy;    Regenerative medicine;   
DOI  :  10.1186/s12964-021-00815-x
来源: DOAJ
【 摘 要 】

Abstract Aim The variable results in clinical trials of adipose tissue-derived stem cells (ASCs) for chondral defects may be due to the different ex vivo culture conditions of the ASCs which are implanted to treat the lesions. We sought to determine the optimal in vitro chondrocyte co-culture condition that promotes infrapatellar fat pad-derived (IFPD) ASC chondrogenic gene expression in a novel co-culture combination. Methods In our study, we utilized an in vitro autologous co-culture of IFPD ASCs and articular chondrocytes derived from Kellgren–Lawrence Grade III/IV osteoarthritic human knee joints at ASC-to-chondrocyte seeding log ratios of 1:1, 10:1, and 100:1. Gene expression following in vitro co-culture was quantified by RT-qPCR with a panel comprising COL1A1, COL2A1, COL10A1, L-SOX5, SOX6, SOX9, ACAN, HSPG2, and COMP for chondrogenic gene expression. Results The chondrogenic gene expression profiles from co-cultures were greater than would be expected from an expression profile modeled from chondrocyte and ASC-only monocultures. Additionally, chondrogenic gene expression decreased with increasing ASC-to-chondrocyte seeding ratios. Conclusions These findings provide insight into the mechanisms underlying clinical ASC therapies and signifies that IFPD ASCs pre-conditioned by chondrocyte co-culture may have improved chondrogenic potential for cartilage repair. This model can help further understand IFPD ASCs in chondral and osteochondral repair and the chondrogenic pathways involved. Video Abstract

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:1次