期刊论文详细信息
Mathematics
Conformal Vector Fields and the De-Rham Laplacian on a Riemannian Manifold
Gabriel-Eduard Vîlcu1  Sharief Deshmukh2  Amira Ishan3 
[1] Department of Cybernetics, Economic Informatics, Finance and Accountancy, Petroleum-Gas University of Ploieşti, Bd. Bucureşti 39, 100680 Ploieşti, Romania;Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;Department of Mathematics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
关键词: Riemannian manifold;    sphere;    conformal vector field;    de-Rham Laplace operator;    Fischer–Marsden differential equation;    Obata’s differential equation;   
DOI  :  10.3390/math9080863
来源: DOAJ
【 摘 要 】

We study the effect of a nontrivial conformal vector field on the geometry of compact Riemannian spaces. We find two new characterizations of the m-dimensional sphere Sm(c) of constant curvature c. The first characterization uses the well known de-Rham Laplace operator, while the second uses a nontrivial solution of the famous Fischer–Marsden differential equation.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次