期刊论文详细信息
Kodai Mathematical Journal
Conformal classification of (k, μ)-contact manifolds
Ramesh Sharma2  Luc Vrancken1 
[1] LAMAV, Université de Valenciennes;Department of Mathematics University of New Haven
关键词: Infinitesimal contact transformation;    conformal vector field;    (k;    μ)-contact manifold;    unit tangent bundle;   
DOI  :  10.2996/kmj/1278076342
学科分类:数学(综合)
来源: Tokyo Institute of Technology, Department of Mathematics
PDF
【 摘 要 】

References(13)First we improve a result of Tanno that says "If a conformal vector field on a contact metric manifold M is a strictly infinitesimal contact transformation, then it is an infinitesimal automorphism of M" by waiving the "strictness" in the hypothesis. Next, we prove that a (k, μ)-contact manifold admitting a non-Killing conformal vector field is either Sasakian or has k = –n – 1, μ = 1 in dimension > 3; and Sasakian or flat in dimension 3. In particular, we show that (i) among all compact simply connected (k, μ)-contact manifolds of dimension > 3, only the unit sphere S2n+1 admits a non-Killing conformal vector field, and (ii) a conformal vector field on the unit tangent bundle of a space-form of dimension > 2 is necessarily Killing.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912080707956ZK.pdf 2KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:1次