期刊论文详细信息
Frontiers in Neural Circuits
Cholinergic neuromodulation controls directed temporal communication in neocortex in vitro
Roger D Traub1  Miles A Whittington2  Fiona E NLeBeau2  Anita K Roopun2  James Rammell2  Mark O Cunningham2 
[1] International Business Machines Thomas J. Watson Research Center;Newcastle University;
关键词: Attention;    auditory;    EEG;    oscillation;    coherence;    Renshaw cell;   
DOI  :  10.3389/fncir.2010.00008
来源: DOAJ
【 摘 要 】

Acetylcholine is the primary neuromodulator involved in cortical arousal in mammals. Cholinergic modulation is involved in conscious awareness, memory formation and attention – processes that involve intercommunication between different cortical regions. Such communication is achieved in part through temporal structuring of neuronal activity by population rhythms, particularly in the beta and gamma frequency ranges (12 – 80 Hz). Here we demonstrate, using in vitro and in silico models, that spectrally identical patterns of beta2 and gamma rhythms are generated in primary sensory areas and polymodal association areas by fundamentally different local circuit mechanisms: Glutamatergic excitation induced beta2 frequency population rhythms only in layer 5 association cortex whereas cholinergic neuromodulation induced this rhythm only in layer 5 primary sensory cortex. This region-specific sensitivity of local circuits to cholinergic modulation allowed for control of the extent of cortical temporal interactions.Furthermore, the contrasting mechanisms underlying these beta2 rhythms produced a high degree of directionality, favouring an influence of association cortex over primary auditory cortex.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次