期刊论文详细信息
International Journal of Molecular Sciences 卷:20
Analysis of Expression and Functional Activity of Aromatic L-Amino Acid Decarboxylase (DDC) and Serotonin Transporter (SERT) as Potential Sources of Serotonin in Mouse Ovary
MariaL. Semenova1  YuriB. Shmukler2  DenisA. Nikishin2  NinaM. Alyoshina2 
[1] Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, bld. 12, Moscow 119991, Russia;
[2] N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Street, 26, Moscow 119334, Russia;
关键词: mouse;    ovary;    serotonin;    SERT;    DDC;    fluoxetine;   
DOI  :  10.3390/ijms20123070
来源: DOAJ
【 摘 要 】

The origin of serotonin in the ovary is the key question for understanding mechanisms of serotonergic regulation of reproductive function. We performed a study of the expression and functional activity of the serotonin transporter (SERT) and the enzyme for the synthesis of serotonin, aromatic l-amino acid decarboxylase (DDC) in mouse ovary. A pronounced peak of SERT mRNA expression occurs at the age of 14 days, but serotonin synthesis enzymes are expressed at the maximum level in the ovaries of newborn mice. SERT is detected immunohistochemically in all cellular compartments of the ovary with a maximum level of immunostaining in the oocytes of growing ovarian follicles. DDC immunolocalization, in contrast, is detected to a greater extent in primordial follicle oocytes, and decreases at the later stages of folliculogenesis. Serotonin synthesis in all cellular compartments occurs at very low levels, whereas specific serotonin uptake is clearly present, leading to a significant increase in serotonin content in the oocytes of growing primary and secondary follicles. These data indicate that the main mechanism of serotonin accumulation in mouse ovary is its uptake by the specific SERT membrane transporter, which is active in the oocytes of the growing ovarian follicles.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次