期刊论文详细信息
Sensors 卷:19
Optimization of a Piezoelectric Energy Harvester and Design of a Charge Pump Converter for CMOS-MEMS Monolithic Integration
Gonzalo Murillo1  Marcos Duque1  Jordi Sacristán1  Jaume Esteve1  Edgardo Leon-Salguero2 
[1] Department of Micro and Nanoengineering, Instituto de Microelectrónica de Barcelona IMB-CNM (CSIC), Campus UAB Bellaterra, 08193 Barcelona, Spain;
[2] Postgrado en Nanotecnología, Universidad de Sonora (Unison), Hermosillo, Sonora 83000, Mexico;
关键词: IoT;    MEMS;    energy harvesting;    monolithic integration;    piezoelectric;    CMOS;    charge pump;    self-powered;    power management;    AlN;   
DOI  :  10.3390/s19081895
来源: DOAJ
【 摘 要 】

The increasing interest in the Internet of Things (IoT) has led to the rapid development of low-power sensors and wireless networks. However, there are still several barriers that make a global deployment of the IoT difficult. One of these issues is the energy dependence, normally limited by the capacitance of the batteries. A promising solution to provide energy autonomy to the IoT nodes is to harvest residual energy from ambient sources, such as motion, vibrations, light, or heat. Mechanical energy can be converted into electrical energy by using piezoelectric transducers. The piezoelectric generators provide an alternating electrical signal that must be rectified and, therefore, needs a power management circuit to adapt the output to the operating voltage of the IoT devices. The bonding and packaging of the different components constitute a large part of the cost of the manufacturing process of microelectromechanical systems (MEMS) and integrated circuits. This could be reduced by using a monolithic integration of the generator together with the circuitry in a single chip. In this work, we report the optimization, fabrication, and characterization of a vibration-driven piezoelectric MEMS energy harvester, and the design and simulation of a charge-pump converter based on a standard complementary metal–oxide–semiconductor (CMOS) technology. Finally, we propose combining MEMS and CMOS technologies to obtain a fully integrated system that includes the piezoelectric generator device and the charge-pump converter circuit without the need of external components. This solution opens new doors to the development of low-cost autonomous smart dust devices.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次