期刊论文详细信息
Gels 卷:7
Design and Fabrication of Sodium Alginate/Carboxymethyl Cellulose Sodium Blend Hydrogel for Artificial Skin
Shan Zhang1  Xinpei Li1  Kun Zhang1  Yanen Wang1  Ying Guo1  Qinghua Wei1 
[1] Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China;
关键词: SA/CMC-Na;    hydrogel membrane;    artificial skin;    3D printing;    skin regeneration;    wound healing;   
DOI  :  10.3390/gels7030115
来源: DOAJ
【 摘 要 】

Tissue-engineered skin grafts have long been considered to be the most effective treatment for large skin defects. Especially with the advent of 3D printing technology, the manufacture of artificial skin scaffold with complex shape and structure is becoming more convenient. However, the matrix material used as the bio-ink for 3D printing artificial skin is still a challenge. To address this issue, sodium alginate (SA)/carboxymethyl cellulose (CMC-Na) blend hydrogel was proposed to be the bio-ink for artificial skin fabrication, and SA/CMC-Na (SC) composite hydrogels at different compositions were investigated in terms of morphology, thermal properties, mechanical properties, and biological properties, so as to screen out the optimal composition ratio of SC for 3D printing artificial skin. Moreover, the designed SC composite hydrogel skin membranes were used for rabbit wound defeat repairing to evaluate the repair effect. Results show that SC4:1 blend hydrogel possesses the best mechanical properties, good moisturizing ability, proper degradation rate, and good biocompatibility, which is most suitable for 3D printing artificial skin. This research provides a process guidance for the design and fabrication of SA/CMC-Na composite artificial skin.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次