期刊论文详细信息
Frontiers in Energy Research 卷:9
Refinements of Pin-Based Pointwise Energy Slowing-Down Method for Resonance Self-Shielding Calculation-II: Verifications
Sooyoung Choi1  Wonkyeong Kim2  Deokjung Lee2 
[1] Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI, United States;
[2] Department of Nuclear Engineering, Ulsan National Institute of Science and Technology, Eonyang, South Korea;
关键词: reactor physics;    resonance treatment;    resonance self-shielding calculation;    slowing-down;    equivalence theory;    light water reactor (LWR);   
DOI  :  10.3389/fenrg.2021.765865
来源: DOAJ
【 摘 要 】

The pin-based pointwise energy slowing-down method (PSM) has been refined through eliminating the approximation for using the pre-tabulated collision probability during the slowing-down calculation. A collision probability table is generated by assuming that material composition and temperature are constant in the fuel pellet using the collision probability method (CPM). Refined PSM (PSM-CPM), which calculates the collision probability in the isolated fuel pellet during the slowing-down calculation using CPM, can consider nonuniform material and temperature distribution. For the methods, the extensive comparative analysis is performed with problems representing various possible conditions in a light water reactor (LWR) design. Conditions are categorized with the geometry, material distribution, temperature profile in the fuel pellet, and burnup. With test problems, PSMs (PSM and PSM-CPM) have been compared with conventional methods based on the equivalence theory. With overall calculation results, PSMs show the accuracy in the eigenvalue with differences in the order of 100 pcm compared to the reference results. There was no noticeable difference in the multigroup cross sections, reaction rates, and pin power distributions. However, PSM-CPM maintains the accuracy in the calculation of the fuel temperature coefficient under the condition with 200% power and nonuniform temperature distribution in the fuel pellet. PSM shows the difference in the eigenvalue in the order of 2,000 pcm for the fictitious pin-cell problem with highly steep temperature profiles and material compositions, but PSM-CPM shows the difference in the eigenvalue within 100 pcm.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:2次