期刊论文详细信息
Sensors 卷:21
Time-Efficient Convolutional Neural Network-Assisted Brillouin Optical Frequency Domain Analysis
Christos Karapanagiotis1  Aleksander Wosniok1  Konstantin Hicke1  Katerina Krebber1 
[1] Bundesanstalt für Materialforschung und-Prüfung, Unter den Eichen 87, 12205 Berlin, Germany;
关键词: distributed Brillouin sensing;    convolutional neural networks;    Brillouin optical frequency domain analysis;    distributed fiber-optic sensors;    temperature and strain sensing;   
DOI  :  10.3390/s21082724
来源: DOAJ
【 摘 要 】

To our knowledge, this is the first report on a machine-learning-assisted Brillouin optical frequency domain analysis (BOFDA) for time-efficient temperature measurements. We propose a convolutional neural network (CNN)-based signal post-processing method that, compared to the conventional Lorentzian curve fitting approach, facilitates temperature extraction. Due to its robustness against noise, it can enhance the performance of the system. The CNN-assisted BOFDA is expected to shorten the measurement time by more than nine times and open the way for applications, where faster monitoring is essential.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次