期刊论文详细信息
Computational Visual Media
Automated brain tumor segmentation on multi-modal MR image using SegNet
  1    2    2    3 
[1] 0000 0001 0807 5670, grid.5600.3, School of Computer Science and Informatics, Cardiff University, CF24 3AA, Cardiff, UK;0000 0001 0807 5670, grid.5600.3, School of Engineering, Cardiff University, CF24 3AA, Cardiff, UK;0000 0001 0807 5670, grid.5600.3, School of Engineering, Cardiff University, CF24 3AA, Cardiff, UK;0000 0001 2108 8169, grid.411498.1, Department of Physics, College of Science for Women, Baghdad University, Baghdad, Iraq;
关键词: brain tumor segmentation;    multi-modal MRI;    convolutional neural networks;    fully convolutional networks;    decision tree;   
DOI  :  10.1007/s41095-019-0139-y
来源: publisher
PDF
【 摘 要 】

The potential of improving disease detection and treatment planning comes with accurate and fully automatic algorithms for brain tumor segmentation. Glioma, a type of brain tumor, can appear at different locations with different shapes and sizes. Manual segmentation of brain tumor regions is not only time-consuming but also prone to human error, and its performance depends on pathologists’ experience. In this paper, we tackle this problem by applying a fully convolutional neural network SegNet to 3D data sets for four MRI modalities (Flair, T1, T1ce, and T2) for automated segmentation of brain tumor and subtumor parts, including necrosis, edema, and enhancing tumor. To further improve tumor segmentation, the four separately trained SegNet models are integrated by post-processing to produce four maximum feature maps by fusing the machine-learned feature maps from the fully convolutional layers of each trained model. The maximum feature maps and the pixel intensity values of the original MRI modalities are combined to encode interesting information into a feature representation. Taking the combined feature as input, a decision tree (DT) is used to classify the MRI voxels into different tumor parts and healthy brain tissue. Evaluating the proposed algorithm on the dataset provided by the Brain Tumor Segmentation 2017 (BraTS 2017) challenge, we achieved F-measure scores of 0.85, 0.81, and 0.79 for whole tumor, tumor core, and enhancing tumor, respectively.Experimental results demonstrate that using SegNet models with 3D MRI datasets and integrating the four maximum feature maps with pixel intensity values of the original MRI modalities has potential to perform well on brain tumor segmentation.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201910106457562ZK.pdf 1830KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:27次