Animals | 卷:12 |
Delay of Feed Post-Hatch Causes Changes in Expression of Immune-Related Genes and Their Correlation with Components of Gut Microbiota, but Does Not Affect Protein Expression | |
Beverly Russell1  Stanislaw Kahl1  Lori L. Schreier1  Katarzyna B. Miska1  Monika Proszkowiec-Weglarz1  Kouassi R. Kpodo1  | |
[1] Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; | |
关键词: delayed feeding; interleukins; avian defensins; gene expression; microbiota; chicken; | |
DOI : 10.3390/ani12101316 | |
来源: DOAJ |
【 摘 要 】
Because the delay of feed post-hatch (PH) has been associated with negative growth parameters, the aim of the current study was to determine the effect of delayed access to feed in broiler chicks on the expression of immune-related genes and select proteins. In addition, an analysis of the correlation between gene expression and components of the gut microbiota was carried out. Ross 708 eggs were incubated and hatched, and hatchlings were divided into FED and NONFED groups. The NONFED birds did not have access to feed until 48 h PH, while FED birds were given feed immediately PH. The ileum from both groups (n = 6 per group) was sampled at embryonic day 19 (e19) and day 0 (wet chicks), and 4, 24, 48, 72, 96, 144, 192, 240, 288, and 336 h PH. Quantitative PCR (qPCR) was carried out to measure the expression of avian interleukin (IL)-1β, IL-4, IL-6, IL-8, IL-18, transforming growth factor (TGF-β), toll-like receptor (TLR)2, TLR4, interferon (IFN)-β, IFN-γ, and avian β-defensins (AvBD) I, 2, 3, 5, 6, 7, 8, 9, and 10. Protein expression of IL-10, IL-1β, IL-8, and IL-18 were measured using ELISAs. A correlation analysis was carried out to determine whether any significant association existed between immune gene expression and components of the ileal luminal and mucosal microbiota. Expression of several immune-related genes (TGF-β, TLR4, IFN-γ, IL-1β, IL-4, IL-6, and AvBDs 8 and 9) were significantly affected by the interaction between feed status and age. The effects were transient and occurred between 48 and 96 h PH. The rest of the genes and four proteins were significantly affected by age, with a decrease in expression noted over time. Correlation analysis indicated that stronger correlations exist among gene expression and microbiota in NONFED birds. The data presented here indicates that delay in feed PH can affect genes encoding components of the immune system. Additionally, the correlation analysis between immune gene expression and microbiota components indicates that a delay in feed has a significant effect on the interaction between the immune system and the microbiota.
【 授权许可】
Unknown