期刊论文详细信息
Water 卷:12
Impact of Hydrogen Peroxide and Copper Sulfate on the Delayed Release of Microcystin
CaitlinM. Glover1  Craig Adams2  Erik Rosenfeldt3  KatherineE. Greenstein4  EricC. Wert4  Arash Zamyadi5 
[1] Department of Civil Engineering, McGill University, Montreal, QC H3A 0G4, Canada;
[2] Department of Civil Engineering, Saint Louis University, St. Louis, MO 63103, USA;
[3] Hazen and Sawyer, Raleigh, NC 27607, USA;
[4] Southern Nevada Water Authority (SNWA), Las Vegas, NV 89193-9954, USA;
[5] Water Research Australia (WaterRA), Adelaide, SA 5001, Australia;
关键词: cyanobacteria;    hydrogen peroxide;    copper sulfate;    stagnation;    microcystins;   
DOI  :  10.3390/w12041105
来源: DOAJ
【 摘 要 】

Algicides, like hydrogen peroxide and copper sulfate, are commonly applied to recreational waters and drinking water sources to mitigate cyanobacterial blooms. In this work, the effects of hydrogen peroxide and copper sulfate were evaluated in two natural bloom samples (collected from Canadian and American waterbodies) and one lab-cultured Microcystis aeruginosa suspended in Colorado River water. Five algicide to dissolved organic carbon (DOC) dose ratios were evaluated during an initial exposure period of 24 hours. One dose ratio (0.4 H2O2:DOC or 0.25 CuSO4:DOC) was then evaluated during stagnation after quenching (hydrogen peroxide) or extended exposure (copper sulfate) for up to 96 or 168 hours. During the initial hydrogen peroxide exposure, the CA bloom had no release of intracellular microcystins (MCs) and the USA bloom only released MC at 4 H2O2:DOC. The reverse occurred with copper sulfate, where the CA bloom released MCs at 0.6 CuSO4:DOC but the USA bloom had no detectable extracellular MCs. Extracellular MC was released from the lab-cultured Microcystis at the lowest hydrogen peroxide and copper sulfate doses. In the hydrogen peroxide stagnation experiment, intracellular MC decreased in the USA bloom after 168 hours despite the low dose applied. Similarly, the extended copper sulfate exposure led to intracellular MC decreases in both bloom samples after 168 hours, despite showing no impact during the initial 24 hour monitoring period. The lab-cultured Microcystis was again less resistant to both algicides, with releases observed after less than 2 hours of stagnation or exposure. The damage to cells as measured by pigments during these experiments did not match the MC data, indicating that blooms with depressed pigment levels can still be a risk to nearby drinking water sources or recreational activities. These results provide insight on the timeline (up to one week) required for monitoring the potential release of MCs after algicide application.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:6次