期刊论文详细信息
Biotechnology for Biofuels
Characterization and modulation of endoplasmic reticulum stress response target genes in Kluyveromyces marxianus to improve secretory expressions of heterologous proteins
Yungang He1  Aijuan Xue1  Tianfang Shi2  Hong Lu2  Yao Yu2  Jungang Zhou2 
[1] Institutes of Biomedical Sciences, Fudan University, 200438, Shanghai, China;State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 200438, Shanghai, China;Shanghai Engineering Research Center of Industrial Microorganisms, 200438, Shanghai, China;
关键词: Kluyveromyces marxianus;    Unfolded protein response;    Overexpression;    Lignocellulolytic enzyme;   
DOI  :  10.1186/s13068-021-02086-7
来源: Springer
PDF
【 摘 要 】

BackgroundKluyveromyces marxianus is a promising cell factory for producing bioethanol and that raised a demand for a high yield of heterologous proteins in this species. Expressions of heterologous proteins usually lead to the accumulation of misfolded or unfolded proteins in the lumen of the endoplasmic reticulum (ER) and then cause ER stress. To cope with this problem, a group of ER stress response target genes (ESRTs) are induced, mainly through a signaling network called unfolded protein response (UPR). Characterization and modulation of ESRTs direct the optimization of heterologous expressions. However, ESRTs in K. marxianus have not been identified so far.ResultsIn this study, we characterized the ER stress response in K. marxianus for the first time, by using two ER stress-inducing reagents, dithiothreitol (DTT) and tunicamycin (TM). Results showed that the Kar2–Ire1–Hac1 pathway of UPR is well conserved in K. marxianus. About 15% and 6% of genes were upregulated during treatment of DTT and TM, respectively. A total of 115 upregulated genes were characterized as ESRTs, among which 97 genes were identified as UPR target genes and 37 UPR target genes contained UPR elements in their promoters. Genes related to carbohydrate metabolic process and actin filament organization were identified as new types of UPR target genes. A total of 102 ESRTs were overexpressed separately in plasmids and their effects on productions of two different lignocellulolytic enzymes were systematically evaluated. Overexpressing genes involved in carbohydrate metabolism, including PDC1, PGK and VID28, overexpressing a chaperone gene CAJ1 or overexpressing a reductase gene MET13 substantially improved secretion expressions of heterologous proteins. Meanwhile, overexpressing a novel gene, KLMA_50479 (named ESR1), as well as overexpressing genes involved in ER-associated protein degradation (ERAD), including HRD3, USA1 andYET3, reduced the secretory expressions. ESR1 and the aforementioned ERAD genes were deleted from the genome. Resultant mutants, except the yet3Δ mutant, substantially improved secretions of three different heterologous proteins. During the fed-batch fermentation, extracellular activities of an endoxylanase and a glucanase in hrd3Δ cells improved by 43% and 28%, respectively, compared to those in wild-type cells.ConclusionsOur results unveil the transcriptional scope of the ER stress response in K. marxianus and suggest efficient ways to improve productions of heterologous proteins by manipulating expressions of ESRTs.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202203047916434ZK.pdf 6976KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:1次