期刊论文详细信息
Biotechnology for Biofuels
Insights into high-efficiency lignocellulolytic enzyme production by Penicillium oxalicum GZ-2 induced by a complex substrate
Hanpeng Liao1  Shuixian Li1  Zhong Wei1  Qirong Shen1  Yangchun Xu1 
[1] National Enginnering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
关键词: Gene expression;    Lignocellulolytic enzyme;    Cellulose and xylan;    Penicillium oxalicum;    Secretome;   
Others  :  1084259
DOI  :  10.1186/s13068-014-0162-2
 received in 2014-07-24, accepted in 2014-10-21,  发布年份 2014
PDF
【 摘 要 】

Background

Agricultural residue is more efficient than purified cellulose at inducing lignocellulolytic enzyme production in Penicillium oxalicum GZ-2, but in Trichoderma reesei RUT-C30, cellulose induces a more efficient response. To understand the reasons, we designed an artificially simulated plant biomass (cellulose plus xylan) to study the roles and relationships of each component in the production of lignocellulolytic enzymes by P. oxalicum GZ-2.

Results

The changes in lignocellulolytic enzyme activity, gene expression involving (hemi)cellulolytic enzymes, and the secretome of cultures grown on Avicel (A), xylan (X), or a mixture of both (AX) were studied. The addition of xylan to the cellulose culture did not affect fungal growth but significantly increased the activity of cellulase and hemicellulase. In the AX treatment, the transcripts of cellulase genes (egl1, egl2, egl3, sow, and cbh2) and hemicellulase genes (xyl3 and xyl4) were significantly upregulated (P <0.05). The proportion of biomass-degrading proteins in the secretome was altered; in particular, the percentage of cellulases and hemicellulases was increased. The percentage of cellulases and hemicellulases in the AX secretome increased from 4.5% and 7.6% to 10.3% and 21.8%, respectively, compared to the secretome of the A treatment. Cellobiohydrolase II (encoded by cbh2) and xylanase II (encoded by xyl2) were the main proteins in the secretome, and their corresponding genes (cbh2 and xyl2) were transcripted at the highest levels among the cellulolytic and xylanolytic genes. Several important proteins such as swollenin, cellobiohydrolase, and endo-beta-1,4-xylanase were only induced by AX. Bray-Curtis similarity indices, a dendrogram analysis, and a diversity index all demonstrated that the secretome produced by P. oxalicum GZ-2 depended on the substrate and that strain GZ-2 directionally adjusted the compositions of lignocellulolytic enzymes in its secretome to preferably degrade a complex substrate.

Conclusion

The addition of xylan to the cellulose medium not only induces more hemicellulases but also strongly activates cellulase production. The proportion of the biomass-degrading proteins in the secretome was altered significantly, with the proportion of cellulases and hemicellulases especially increased. Xylan and cellulose have positively synergistic effects, and they play a key role in the induction of highly efficient lignocellulolytic enzymes.

【 授权许可】

   
2014 Liao et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113160111337.pdf 1560KB PDF download
Figure 7. 27KB Image download
Figure 6. 40KB Image download
Figure 5. 51KB Image download
Figure 4. 72KB Image download
Figure 3. 39KB Image download
Figure 2. 85KB Image download
Figure 1. 67KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D: Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 2008, 26:553-560.
  • [2]Merino ST, Cherry J: Progress and challenges in enzyme development for biomass utilization. In Biofuels. Edited by Lisbeth O. Springer, Springer Berlin Heidelberg; 2007:95-120.
  • [3]Marjamaa K, Toth K, Bromann PA, Szakacs G, Kruus K: Novel Penicillium cellulases for total hydrolysis of lignocellulosics. Enzyme Microb Technol 2013, 52:358-369.
  • [4]Liming X, Xueliang S: High-yield cellulase production by Trichoderma reesei ZU-02 on corn cob residue. Bioresour Technol 2004, 91:259-262.
  • [5]Fang X, Yano S, Inoue H, Sawayama S: Lactose enhances cellulase production by the filamentous fungus Acremonium cellulolyticus. J Biosci Bioeng 2008, 106:115-120.
  • [6]Mandels M, Reese ET: Induction of cellulase in fungi by cellobiose.J Bacteriol 1960, 79:816.
  • [7]Sternberg D, Mandels GR: Induction of cellulolytic enzymes in Trichoderma reesei by sophorose. J Bacteriol 1979, 139:761-769.
  • [8]Morikawa Y, Ohashi T, Mantani O, Okada H: Cellulase induction by lactose in Trichoderma reesei PC-3-7. Appl Microbiol Biotechnol 1995, 44:106-111.
  • [9]Karaffa L, Fekete E, Gamauf C, Szentirmai A, Kubicek CP, Seiboth B: D-Galactose induces cellulase gene expression in Hypocrea jecorina at low growth rates. Microbiology 2006, 152:1507-1514.
  • [10]Do Vale LH, Gómez‐Mendoza DP, Kim MS, Pandey A, Ricart CA, Edivaldo Filho XF, Sousa MV: Secretome analysis of the fungus Trichoderma harzianum grown on cellulose. Proteomics 2012, 12:2716-2728.
  • [11]Royer JC, Nakas J: Interrelationship of xylanase induction and cellulase induction of Trichoderma longibrachiatum. Appl Environ Microbiol 1990, 56:2535-2539.
  • [12]Liao H, Xu C, Tan S, Wei Z, Ling N, Yu G, Raza W, Zhang R, Shen Q, Xu Y: Production and characterization of acidophilic xylanolytic enzymes from Penicillium oxalicum GZ-2. Bioresour Technol 2012, 123:117-124.
  • [13]Fujii T, Fang X, Inoue H, Murakami K, Sawayama S: Enzymatic hydrolyzing performance of Acremonium cellulolyticus and Trichoderma reesei against three lignocellulosic materials. Biotechnol Biofuels 2009, 2:1-8. BioMed Central Full Text
  • [14]Rana V, Eckard AD, Teller P, Ahring BK: On-site enzymes produced from Trichoderma reesei RUT-C30 and Aspergillus saccharolyticus for hydrolysis of wet exploded corn stover and loblolly pine. Bioresour Technol 2014, 154:282-289.
  • [15]Juhasz T, Szengyel Z, Reczey K, Siika-Aho M, Viikari L: Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources. Process Biochem 2005, 40:3519-3525.
  • [16]Alriksson B, Rose SH, van Zyl WH, Sjöde A, Nilvebrant N-O, Jönsson LJ: Cellulase production from spent lignocellulose hydrolysates by recombinant Aspergillus niger. Appl Environ Microbiol 2009, 75:2366-2374.
  • [17]Li J, Lin L, Li H, Tian C, Ma Y: Transcriptional comparison of the filamentous fungus Neurospora crassa growing on three major monosaccharides D-glucose, D-xylose and L-arabinose. Biotechnol Biofuels 2014, 7:1-15. BioMed Central Full Text
  • [18]Jourdier E, Cohen C, Poughon L, Larroche C, Monot F, Chaabane FB: Cellulase activity mapping of Trichoderma reesei cultivated in sugar mixtures under fed-batch conditions. Biotechnol Biofuels 2013, 6:79-91. BioMed Central Full Text
  • [19]Andersen MR, Vongsangnak W, Panagiotou G, Salazar MP, Lehmann L, Nielsen J: A trispecies Aspergillus microarray: comparative transcriptomics of three Aspergillus species. Proc Natl Acad Sci U S A 2008, 105:4387-4392.
  • [20]Delmas S, Pullan ST, Gaddipati S, Kokolski M, Malla S, Blythe MJ, Ibbett R, Campbell M, Liddell S, Aboobaker A: Uncovering the genome-wide transcriptional responses of the filamentous fungusAspergillus nigerto lignocellulose using RNA sequencing.PLoS Genet 2012, 8:e1002875.
  • [21]Munster JMv, Daly P, Delmas S, Pullan ST, Blythe MJ, Malla S, Kokolski M, Noltorp E, Wennberg K, Fetherston R: The role of carbon starvation in the induction of enzymes that degrade plant-derived carbohydrates inAspergillus niger.Fungal Genet Biol 2014.
  • [22]De Souza WR, Maitan-Alfenas GP, de Gouvêa PF, Brown NA, Savoldi M, Battaglia E, Goldman MHS, de Vries RP, Goldman GH: The influence of Aspergillus niger transcription factors AraR and XlnR in the gene expression during growth in D-xylose, L-arabinose and steam-exploded sugarcane bagasse. Fungal Genet Biol 2013, 60:29-45.
  • [23]Liu D, Li J, Zhao S, Zhang R, Wang M, Miao Y, Shen Y, Shen Q: Secretome diversity and quantitative analysis of cellulolyticAspergillus fumigatusZ5 in the presence of different carbon sources.Biotechnol Biofuels 2013, 6:149.
  • [24]Saykhedkar S, Ray A, Ayoubi-Canaan P, Hartson SD, Prade R, Mort AJ: A time course analysis of the extracellular proteome of Aspergillus nidulans growing on sorghum stover. Biotechnol Biofuels 2012, 5:1-36. BioMed Central Full Text
  • [25]Horta MAC, Vicentini R, da Silva DP, Laborda P, Crucello A, Freitas S, Kuroshu RM, Polikarpov I, da Cruz Pradella JG, Souza AP: Transcriptome profile ofTrichoderma harzianumIOC-3844 induced by sugarcane bagasse.PLoS One 2014, 9:e88689.
  • [26]De Souza WR, de Gouvea PF, Savoldi M, Malavazi I, de Souza Bernardes LA, Goldman MHS, de Vries RP, de Castro Oliveira JV, Goldman GH: Transcriptome analysis of Aspergillus niger grown on sugarcane bagasse. Biotechnol Biofuels 2011, 4:1-17. BioMed Central Full Text
  • [27]Adav SS, Li AA, Manavalan A, Punt P, Sze SK: Quantitative iTRAQ secretome analysis of Aspergillus niger reveals novel hydrolytic enzymes. J Proteome Res 2010, 9:3932-3940.
  • [28]Alvira P, Gyalai‐Korpos M, Barta Z, Oliva JM, Réczey K, Ballesteros M: Production and hydrolytic efficiency of enzymes from Trichoderma reesei RUTC30 using steam pretreated wheat straw as carbon source. J Chem Technol Biotechnol 2013, 88:1150-1156.
  • [29]Jorgensen H, Morkeberg A, Krogh KBR, Olsson L: Production of cellulases and hemicellulases by three Penicillium species: effect of substrate and evaluation of cellulase adsorption by capillary electrophoresis. Enzyme Microb Technol 2005, 36:42-48.
  • [30]Wei X, Zheng K, Chen M, Liu G, Li J, Lei Y, Qin Y, Qu Y: Transcription analysis of lignocellulolytic enzymes of Penicillium decumbens 114-2 and its catabolite-repression-resistant mutant. C R Biol 2011, 334:806-811.
  • [31]Mach-Aigner AR, Pucher ME, Steiger MG, Bauer GE, Preis SJ, Mach RL: Transcriptional regulation of xyr1, encoding the main regulator of the xylanolytic and cellulolytic enzyme system in Hypocrea jecorina. Appl Environ Microbiol 2008, 74:6554-6562.
  • [32]Furukawa T, Shida Y, Kitagami N, Mori K, Kato M, Kobayashi T, Okada H, Ogasawara W, Morikawa Y: Identification of specific binding sites for XYR1, a transcriptional activator of cellulolytic and xylanolytic genes in Trichoderma reesei. Fungal Genet Biol 2009, 46:564-574.
  • [33]Gielkens MM, Dekkers E, Visser J, de Graaff LH: Two cellobiohydrolase-encoding genes from Aspergillus niger require D-xylose and the xylanolytic transcriptional activator XlnR for their expression. Appl Environ Microbiol 1999, 65:4340-4345.
  • [34]Van Peij NN, Gielkens MM, de Vries RP, Visser J, de Graaff LH: The transcriptional activator XlnR regulates both xylanolytic and endoglucanase gene expression in Aspergillus niger. Appl Environ Microbiol 1998, 64:3615-3619.
  • [35]Stricker AR, Steiger MG, Mach RL: Xyr1 receives the lactose induction signal and regulates lactose metabolism in Hypocrea jecorina. FEBS Lett 2007, 581:3915-3920.
  • [36]Mach-Aigner AR, Pucher ME, Mach RL: D-Xylose as a repressor or inducer of xylanase expression in Hypocrea jecorina (Trichoderma reesei). Appl Environ Microbiol 2010, 76(6):1770-1776.
  • [37]Marui J, Tanaka A, Mimura S, de Graaff LH, Visser J, Kitamoto N, Kato M, Kobayashi T, Tsukagoshi N: A transcriptional activator, AoXlnR, controls the expression of genes encoding xylanolytic enzymes in Aspergillus oryzae. Fungal Genet Biol 2002, 35:157-169.
  • [38]Kurasawa T, Yachi M, Suto M, Kamagata Y, Takao S, Tomita F: Induction of cellulase by gentiobiose and its sulfur-containing analog in Penicillium purpurogenum. Appl Environ Microbiol 1992, 58:106-110.
  • [39]Stricker AR, Grosstessner-Hain K, Würleitner E, Mach RL: Xyr1 (xylanase regulator 1) regulates both the hydrolytic enzyme system and D-xylose metabolism in Hypocrea jecorina. Eukaryot Cell 2006, 5:2128-2137.
  • [40]Tani S, Kawaguchi T, Kobayashi T: Complex regulation of hydrolytic enzyme genes for cellulosic biomass degradation in filamentous fungi. Appl Microbiol Biotechnol 2014, 98:4829-4837.
  • [41]Liu G, Zhang L, Wei X, Zou G, Qin Y, Ma L, Li J, Zheng H, Wang S, Wang C: Genomic and secretomic analyses reveal unique features of the lignocellulolytic enzyme system ofPenicillium decumbens.PLoS One 2013, 8:e55185.
  • [42]Ilmen M, Saloheimo A, Onnela M-L, Penttilä ME: Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei. Appl Environ Microbiol 1997, 63:1298-1306.
  • [43]Vandooren J, Geurts N, Martens E, Van den Steen PE, Opdenakker G: Zymography methods for visualizing hydrolytic enzymes. Nat Meth 2013, 10:211-220.
  • [44]Kim KH, Brown KM, Harris PV, Langston JA, Cherry JR: A proteomics strategy to discover β-glucosidases from Aspergillus fumigatus with two-dimensional page in-gel activity assay and tandem mass spectrometry. J Proteome Res 2007, 6:4749-4757.
  • [45]Hori C, Igarashi K, Katayama A, Samejima M: Effects of xylan and starch on secretome of the basidiomycete Phanerochaete chrysosporium grown on cellulose. FEMS Microbiol Lett 2011, 321:14-23.
  • [46]Liao H, Sun S, Wang P, Bi W, Tan S, Wei Z, Mei X, Liu D, Raza W, Shen Q: A new acidophilic endo-β-1,4-xylanase from Penicillium oxalicum: cloning, purification, and insights into the influence of metal ions on xylanase activity. J Ind Microbiol Biotechnol 2014, 41:1071-1083.
  • [47]Gómez-Mendoza DP, Junqueira M, Do Vale LHF, Domont GB, Filho EXF, Sousa MVD, Ricart CAO: Secretomic survey of Trichoderma harzianum grown on plant biomass substrates. J Proteome Res 2014, 13(4):1810-1822.
  • [48]Martinez D, Challacombe J, Morgenstern I, Hibbett D, Schmoll M, Kubicek CP, Ferreira P, Ruiz-Duenas FJ, Martinez AT, Kersten P: Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc Natl Acad Sci U S A 2009, 106:1954-1959.
  • [49]Bailey MJ, Buchert J, Viikari L: Effect of pH on production of xylanase by Trichoderma reesei on xylan- and cellulose-based media. Appl Biochem Biotechnol 1993, 40:224-229.
  • [50]Chávez R, Bull P, Eyzaguirre J: The xylanolytic enzyme system from the genus Penicillium. J Biotechnol 2006, 123:413-433.
  • [51]Ghose T: Measurement of cellulase activities. Pure Appl Chem 1987, 59:257-268.
  • [52]Bailey MJ, Biely P, Poutanen K: Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 1992, 23:257-270.
  • [53]Miller GL: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 1959, 31:426-428.
  • [54]Parry NJ, Beever DE, Owen E, Vandenberghe I, Van Beeumen J, Bhat MK: Biochemical characterization and mechanism of action of a thermostable beta-glucosidase purified from Thermoascus aurantiacus. Biochem J 2001, 353:117-127.
  • [55]Ahamed A, Vermette P: Culture-based strategies to enhance cellulase enzyme production from Trichoderma reesei RUT-C30 in bioreactor culture conditions. Biochem Eng J 2008, 40:399-407.
  • [56]Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227:680-685.
  • [57]Peterson R, Grinyer J, Nevalainen H: Extracellular hydrolase profiles of fungi isolated from koala faeces invite biotechnological interest. Mycol Prog 2011, 10:207-218.
  • [58][https://www.ncbi.nlm.nih.gov] webcite The National Center for Biotechnology Information. []
  • [59]Lee C, Lee S, Shin SG, Hwang S: Real-time PCR determination of rRNA gene copy number: absolute and relative quantification assays with Escherichia coli. Appl Microbiol Biotechnol 2008, 78:371-376.
  • [60]Petersen TN, Brunak S, von Heijne G, Nielsen H: SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Meth 2011, 8:785-786.
  • [61][http://web.expasy.org/compute_pi/] webcite Compute pI/Mw tool. []
  • [62]Katz E, Fon M, Eigenheer RA, Phinney BS, Fass JN, Lin D, Sadka A, Blumwald E: A label-free differential quantitative mass spectrometry method for the characterization and identification of protein changes during citrus fruit development.Proteome Sci 2010, 8:68.
  文献评价指标  
  下载次数:0次 浏览次数:4次