期刊论文详细信息
Frontiers in Cellular and Infection Microbiology
Supplementation With Chinese Medicinal Plant Extracts From Lonicera hypoglauca and Scutellaria baicalensis Mitigates Colonic Inflammation by Regulating Oxidative Stress and Gut Microbiota in a Colitis Mouse Model
Huiyuan Lv1  Lei Liu2  Hongfu Zhang2  Bao Yi2  Ruqing Zhong2  Yong Zhao2  Liang Chen2  Mengyu Wang2  Hui Han3  Fan Wan4  Fujiang Hou5 
[1] Beijing Centre Technology Co., Ltd., Beijing, China;State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China;State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China;Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium;State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China;State Key Laboratory of Grassland Agro-Ecosystem, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China;State Key Laboratory of Grassland Agro-Ecosystem, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China;
关键词: traditional Chinese medicinal plants;    inflammation;    gut microbiota;    oxidative stress;    Lonicera hypoglauca;    Scutellaria baicalensis;   
DOI  :  10.3389/fcimb.2021.798052
来源: Frontiers
PDF
【 摘 要 】

Colitis, a chronic inflammatory bowel disease, is characterized by bloody diarrhea and inflammation in the colon. Lonicera hypoglauca (“Shanyinhua” in Chinese) and Scutellaria baicalensis (“Huangqin” in Chinese) are two traditional Chinese medicinal plants rich in polyphenols, such as chlorogenic acid (CGA) and baicalin (BA), with the effects of anti-inflammation and antioxidation. However, it remains unknown whether extracts from L. hypoglauca and S. baicalensis (LSEs) could mitigate colonic inflammation. In the present study, ICR mice (22.23 ± 1.65 g) were allocated to three groups treated with chow diet without (CON) or with dextran sulfate sodium (DSS) (CON+DSS) in water or LSE supplementation in diet with DSS (LSE+DSS), and then inflammatory and oxidative parameters and colonic microbiota were detected. The results showed that LSE (500 mg/kg) treatment mitigated DSS-induced colitis symptoms and restored the shortened colon length, the increased disease activity index (DAI), and the damaged intestinal barrier. In serum, LSE supplementation significantly decreased levels of pro-inflammatory cytokines including interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and lipopolysaccharide (LPS) and increased IL-10 level. Meanwhile, superoxide dismutase (SOD) and catalase (CAT) were increased, and malondialdehyde (MDA) and reactive oxygen species (ROS) levels were decreased. In the colon tissue, qPCR results showed that LSE supplementation dramatically downregulated the transcriptional expression of IL-1β, IL-6, TNF-α, and MDA and upregulated the expression of SOD1, CAT, and IL-10. Additionally, the damaged gut barriers occludin and zonula occludens-1 (ZO-1) in the CON+DSS group were enhanced with LSE supplementation. Furthermore, LSE treatment regulated the gut microbial communities with higher relative abundance of Dubosiella and Ruminococcus torques group and lower relative abundance of Bacteroides and Turicibacter. Moreover, the contents of short-chain fatty acids (SCFAs) as products of gut microbiota were also increased. Correlation analysis showed that the mRNA expression of SOD1 was negatively correlated with TNF-α (r = -0.900, P < 0.05); the mRNA expression of IL-6 (r = -0.779, P < 0.05) and TNF-α (r = -0.703, P < 0.05) had a dramatically negative correlation with Dubosiella. In conclusion, LSE supplementation could effectively ameliorate inflammation by modulating oxidative stress and gut microbiota in a colitis mouse model.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202202021292186ZK.pdf 20833KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:11次