期刊论文详细信息
The European Physical Journal C
Collapse and dispersal of a homogeneous spin fluid in Einstein–Cartan theory
A. H. Ziaie1  M. Hashemi1  S. Jalalzadeh1 
[1] Department of Physics, Shahid Beheshti University, G. C., Evin, 19839, Tehran, Iran;
关键词: Apparent Horizon;    Gravitational Collapse;    Torsion Tensor;    Weak Energy Condition;    Affine Connection;   
DOI  :  10.1140/epjc/s10052-015-3276-1
来源: Springer
PDF
【 摘 要 】

In the present work, we revisit the process of gravitational collapse of a spherically symmetric homogeneous dust fluid which is described by the Oppenheimer–Snyder (OS) model (Oppenheimer and Snyder in Phys Rev D 56:455, 1939). We show that such a scenario would not end in a spacetime singularity when the spin degrees of freedom of fermionic particles within the collapsing cloud are taken into account. To this purpose, we take the matter content of the stellar object as a homogeneous Weyssenhoff fluid. Employing the homogeneous and isotropic FLRW metric for the interior spacetime setup, it is shown that the spin of matter, in the context of a negative pressure, acts against the pull of gravity and decelerates the dynamical evolution of the collapse in its later stages. Our results show a picture of gravitational collapse in which the collapse process halts at a finite radius, whose value depends on the initial configuration. We thus show that the spacetime singularity that occurs in the OS model is replaced by a non-singular bounce beyond which the collapsing cloud re-expands to infinity. Depending on the model parameters, one can find a minimum value for the boundary of the collapsing cloud or correspondingly a threshold value for the mass content below which the horizon formation can be avoided. Our results are supported by a thorough numerical analysis.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202112168088770ZK.pdf 342KB PDF download
  文献评价指标  
  下载次数:15次 浏览次数:7次