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Abstract In the present work, we revisit the process of
gravitational collapse of a spherically symmetric homoge-
neous dust fluid which is described by the Oppenheimer—
Snyder (OS) model (Oppenheimer and Snyder in Phys Rev
D 56:455, 1939). We show that such a scenario would not
end in a spacetime singularity when the spin degrees of free-
dom of fermionic particles within the collapsing cloud are
taken into account. To this purpose, we take the matter con-
tent of the stellar object as ahomogeneous Weyssenhoff fluid.
Employing the homogeneous and isotropic FLRW metric for
the interior spacetime setup, it is shown that the spin of mat-
ter, in the context of a negative pressure, acts against the
pull of gravity and decelerates the dynamical evolution of
the collapse in its later stages. Our results show a picture of
gravitational collapse in which the collapse process halts at
a finite radius, whose value depends on the initial configura-
tion. We thus show that the spacetime singularity that occurs
in the OS model is replaced by a non-singular bounce beyond
which the collapsing cloud re-expands to infinity. Depending
on the model parameters, one can find a minimum value for
the boundary of the collapsing cloud or correspondingly a
threshold value for the mass content below which the hori-
zon formation can be avoided. Our results are supported by
a thorough numerical analysis.

1 Introduction

One of the most important questions in a gravitational theory,
such as general relativity (GR), and relativistic astrophysics
is the gravitational collapse of a massive star under its own
gravity at the end of its life cycle. A process in which a
sufficiently massive star undergoes a continual gravitational
collapse on exhausting its nuclear fuel, without achieving
an equilibrium state [2]. According to the singularity theo-
rems in GR [3-5], the spacetimes describing the solutions
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of the Einstein field equations in a typical scenario of the
collapse would inevitably admit singularities.! These theo-
rems are based on three main assumptions under which the
existence of a spacetime singularity is foretold in the form of
geodesic incompleteness in the spacetime. The first premise
is in the form of a suitable causality condition that ensures a
physically reasonable global structure of the spacetime. The
second premise is an energy condition that requires the pos-
itivity of the energy density at the classical regime as seen
by a local observer. The third one requires that gravity be so
strong that trapped surface? formation must occur during the
dynamical evolution of a continual gravitational collapse.

The first detailed treatment of the gravitational collapse
of a massive star, within the framework of GR, was pub-
lished by Oppenheimer and Snyder [1]. They concluded that
gravitational collapse of a spherically symmetric homoge-
neous dust cloud would end in a black hole. Such a black
hole is described by the presence of a horizon which covers
the spacetime singularity. This scenario provides the basic
motivation for the physics of black holes and the cosmic
censorship conjecture (CCC) [8—11]. This conjecture states
that the spacetime singularities that develop in a gravitational
scenario of the collapse are necessarily covered by the event
horizons, thus ensuring that the collapse end-product is a
black hole only. As no proof, nor a stringent mathematical
formulation of the CCC has been available so far, a great
deal of effort has been made in the past decades to perform
a detailed study of several collapse settings in GR, in order
to extend our understanding of this phenomenon.

While black hole physics has given rise to interesting theo-
retical as well as astrophysical progress, it is necessary, how-

! These are the spacetime events where the metric tensor is undefined
or is not suitably differentiable, the curvature scalars and densities are
infinite and the existing physical framework would break down [6].

2 A trapped surface is a closed two-surface on which both in-going as
well as out-going light signals normal to it are necessarily converging

(7.
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ever, to investigate more realistic collapse settings in order
to put black hole physics on a firm status. This is because
the OS model is rather idealized and pressures as well as
inhomogeneities within the matter distributions would play
an important role in the collapse dynamics of any realis-
tic stellar object. It is therefore of significant importance to
broaden the study of gravitational collapse to more realistic
models in order to deal with this question: what ways are
there for possible departures in final outcomes, as opposed
to the homogeneous dust cloud collapse? Within this context,
several gravitational collapse settings have been investigated
over the past years which represent the occurrence of naked
singularities.®> Work along this line has been reported in the
literature within a variety of models; among them we quote
the role of inhomogeneities within the matter distribution
on the final fate of gravitational collapse [12-22], collapse
of a perfect fluid with heat conduction [23-26], the effects
of shear on the collapse end-product [27-30], and the col-
lapse process in the context of different gravitational theories
[31,32] (see also [33,34] for recent reviews).

On the other hand, though GR has emerged as a highly
successful theory of gravitation, it suffers from the occur-
rence of spacetime singularities under physically reasonable
conditions. It is therefore plausible to seek for the alternative
theories of gravitation whose geometrical attributes are not
present in GR. This allows for the inclusion of more real-
istic matter fields within the structure of stellar objects, in
order to cure the singularity problem. In this regard, since
the realistic stars are made up of fermions, it would be diffi-
cult to reject the role of intrinsic angular momentum (spin)
of fermions in collapse studies. As we shall see, the inclusion
of spin of fermions and thus its possible effects on the col-
lapse dynamics could be of significant importance, specially
at the late stages of the collapse setting where these effects
could go against the gravitational attraction to ultimately bal-
ance it. In such a scenario the collapse may no longer termi-
nate in a spacetime singularity and instead is replaced by
a bounce, a point at which the contraction of matter cloud
stops and an expanding phase begins. However, if the spin
effects are explicitly present, then GR will no longer be the
relevant theory to describe the collapse dynamics. In GR, the
energy—momentum tensor couples to the metric, while in the
presence of fermions, it is expected that the intrinsic angu-
lar momentum is coupled to a geometrical quantity related
to the rotational degrees of freedom in the spacetime, the so
called spacetime torsion. This obviously is not possible in
the ambit of GR so that one is forced to modify the theory
in order to introduce torsion and relate it to the spin degrees

3 Inthis case, the horizons are delayed or failed to form during collapse,
as governed by the internal dynamics of the collapsing object. Then the
scenario where the super-dense regions are visible to external observers
occurs, and a visible naked singularity forms [2].
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of freedom of fermions. This point of view suggests a space-
time manifold which is non-Riemannian. One such frame-
work, within which the inclusion of spin effects of fermions
can be worked out and thus will allow non-trivial dynamical
consequences to be extracted is the Einstein—Cartan (EC) the-
ory [35-39]. Within this context, many cosmological models
have been found in which the unphysical big bang singular-
ity is replaced with a bounce at a finite amount the scalar
factor [40-54]. From another perspective, the research of the
recent years has shown that in the final stages of a typical sce-
nario of the collapse where a high energy regime governs, the
effects of quantum gravity would regularize the singularity
that happens in the classical model [55,56]. In cosmological
settings, it is shown that non-perturbative quantum geomet-
ric effects in loop quantum cosmology would replace the
classical singularity by a quantum bounce in the high energy
regime where the loop quantum modifications are dominant
[57-61]. However, since the full quantum theory of gravity
has not yet been discovered, investigating the repulsive spin
effects of fermions, which is more physically reasonable and
confirmed observationally, on the final state of collapse could
be well motivated. The organization of this paper is as fol-
lows: In Sect. 2 we give a brief review on the field equations
in EC theory and the phenomenological Weyssenhoff model.
In Sect. 3, we study the collapse dynamics in the presence of
spin effects and the possibility of singularity removal. Finally,
our conclusions are drawn in Sect. 4.

2 Einstein—Cartan theory

As we know, the dynamics of the gravitational field, i.e.,
the metric field, in GR is described by the Hilbert—Einstein
action with the Lagrangian which is linear in curvature scalar.
Contrary to GR, in the gravity with torsion there is a consid-
erable freedom in constructing the dynamical scheme, since
one can define much more invariants from torsion and curva-
ture tensors. There are two most attractable classes of mod-
els, namely: the EC theory and the quadratic theories. In this
work we are interested in the former one for which the action
integral is given by

S:/d4x¢7g{;—f+cm}, )

where k = 871G (we set ¢ = 1) is the gravitational cou-
pling constant, Ly, is the Lagrangian for the matter fields
and R is the EC curvature scalar constructed out of the gen-
eral asymmetric connection IA“’; v 1.€., the connection of the
Riemann-Cartan manifold. The torsion tensor 7'%, , is defined

as the antisymmetric part of the affine connection, given by

1 4 .
Ths = 1 ‘op = T gal: 2
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From the metricity condition, @a g = 0 we can find the
affine connection as

Py ={i )+ Kl 3)

where the first part is the Christoffel symbols and the second
part is the contorsion tensor defined as

K'ap=Tap + Tog' +Tpa- ¥

Extremizing the total action with respect to the contorsion
tensor gives the Cartan field equation as

= BTy + 85T, = —3kn,5, ®
where 4% = 2(8L/8K 10p)//—¢ is the spin angular
momentum tensor [38,39]. It is worth noting that the equation
governing the torsion tensor is an equation of pure algebraic
type, i.e., the torsion is not allowed to propagate beyond the
matter distribution as a torsion wave or through any interac-
tion of non-vanishing range [38,39]; therefore it can be only
nonzero inside material bodies. Varying the total action with
respect to the metric tensor leads to the Einstein field equation
with additional terms on the curvature side that are quadratic
in the torsion tensor [62—64]. Substituting for the torsion ten-

sor, from Eq. (5), into these terms we get the combined field
equations [38,39,53,54,62—-66]:

Gup({) =« (Tpup + Zyp), (6)

where 7,5 = 2(8Lm/8g")//—g is the dynamical energy—
momentum tensor and X, can be considered as representing
the contribution of an effective spin—spin interaction [38,39],
i.e., the product terms

1
¥
T8 = >k [rﬂa‘xrﬁy =, tya — T, Tpay

1 1
+§Ta]:LTay,3 + Zguﬁ (Zfaye":aey

—210[’”3;”‘5E + t""“rayg)] . 7

It now is obvious that the second term on the right hand side
of (6), represents a correction (though very weakly at ordi-
nary densities as this term carries a factor «2) to the dynam-
ical energy-momentum tensor, which takes into account the
spin contributions to the geometry of the manifold.* How-
ever, the spin corrections are significant only at the late stages
of gravitational collapse of a compact object, where super-
dense regions of extreme gravity are involved. Therefore, we
have a good motivation to investigate the collapse process of
material fluid sources which are endowed with spin. Let us
now apply Eq. (6) to estimate the influence of spin in the case
of the Weyssenhoff fluid, which generalizes the perfect fluid
of GR to the case of non-vanishing spin. This model of the

4 We note that if the spin is switched off, the field Eq. (6) reduces to
the ordinary Einstein’s field equation.

fluid was first studied by Weyssenhoff and Raabe [67-69]
and extended by Obukhov and Korotky in order to build cos-
mological models based on the EC theory [70]. In the model
presented in this paper we employ an ideal Weyssenhoff fluid
which is considered as a continuous medium whose elements
are characterized by the intrinsic angular momentum (spin)
of particles. In this model the spin density is described by the
second-rank antisymmetric tensor S, = —S,,. The spin
tensor for the Weyssenhoff fluid is then postulated to be

T,“f‘ = S;an» 8)

where U? is the four-velocity of the fluid element. The
Frenkel condition which arises by varying the Lagrangian
of the sources [70] requires S*¥U,, = 0. This condition fur-
ther restricts the torsion tensor to be traceless.

From the microscopical viewpoint, a randomly oriented
gas of fermions is the source for the spacetime torsion. How-
ever, we have to treat this issue from a macroscopic perspec-
tive, which means we need to perform suitable spacetime
averaging. In this respect, the average of the spin density ten-
sor vanishes, (S,,) = 0[38,39,71]. But even with this term
vanishing at macroscopic level, the square of the spin den-
sity tensor % = %(S,WS’”) contributes to the total energy—
momentum tensor. Taking these considerations into account,
the relations (6)—(8) then give the Einstein field equation with
spin correction terms [38,39,65,66]

Guv = (p+p =557 Uuly = (p = 55%) gus )

where p and p are the usual energy density and pressure
of the perfect fluid satisfying a barotropic equation of state
p = wp. Thus, the EC equation for such a spin fluid would
be equivalent to the Einstein equation for a perfect fluid with
the effective energy density pest = p — %SZ and effective
pressure peff = p — %Sz. This estimate shows that the con-
tribution of the spin of the fermions to the gravitational inter-
action is negligible in the case of normal matter densities
(e.g., in the early stages of the collapse process) while in the
late stages of the collapse, where one encounters ultra-high
energy densities, it is the spin contribution that decides the
final fate of the scenario of the collapse. This is the subject
of our next discussion.

3 Spin effects on the collapse dynamics and singularity
removal

The study of gravitational collapse of a compact object and
its importance in relativistic astrophysics was initiated since
the work of Datt [72] and OS [1] (see also [73] for a pedagogi-
cal discussion). This model, which simplifies the complexity
of such an astrophysical scenario, describes the process of
gravitational collapse of a homogeneous dust cloud with no
rotation and internal stresses in the framework of GR. Assum-
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ing the interior geometry of the collapsing object to be that
of the FLRW metric, they investigated the dynamics of the
continuous gravitational collapse of such a matter distribu-
tion under its own weight and showed that for an observer
comoving with the fluid, the radius of the star crushes to zero
size and the energy density diverges in a finite proper time.
For this idealized model, which showed that a black hole is
developed as the collapse end-state, the only evolving portion
of the spacetime is the interior of the collapsing object, while
the exterior spacetime remains like that of the Schwarzschild
solution with a dynamical boundary. However, in more real-
istic scenarios, the dynamical evolution of a collapse setting
would be significantly different in the later stages of the col-
lapse where the inhomogeneities are introduced within the
densities and pressures. These effects could alter the dynam-
ics of the horizons and, consequently, the scenario describing
the fate of collapse [74].

The spin effects within more realistic stellar collapse mod-
els could have considerable effects on the collapse dynamics
as we shall see in this section. In order to deal with this pur-
pose, the matter content of the collapsing object is taken as a
homogeneous and isotropic Weyssenhoff fluid that collapses
under its own gravity. We then parametrize the interior line
element as

a(r)?dr?
1 —kr?

where R(t, r) = ra(t) is the physical radius of the collapsing
star with a(¢) is the scale factor, k is a constant that is related
to the curvature of spatial metric, and d$? is the standard
line element on the unit two-sphere. The field equations then
read

ds? = dr* — — R%(1, r)d2, (10)

) 2
(2 + J = 810, _ Gngl 2
3 3 ’
o (1D
4= G (p+3p) + 5(4nG)*S2.
The contracted Bianchi identities give rise to the continuity

equation:

. a

Peff = —3;(/Oeff + Peft), (12)

whence we have

. a 9t a

p=-3-(p+p), (§)=-6-5" (13)
a a

The first parts of the above equations give
g\ —30+w)

p = loi — . (14)
ai

where p; is the initial energy density profile and a; is the
initial value of the scale factor at the initial epoch. A suitable
averaging procedure leads to the following relation between
the spin squared and energy densities [75]:

@ Springer

S2 — _Alerwpm’ (15)

where A, is a dimensional constant that depends on the equa-
tion of state parameter. It should be noticed that substituting
(14) into the above expression leads to S oc a9, which is
nothing but the solution of the second part of (13). The field
equations can then be re-written as

(%)2+ a% =2Ca—3(1+w) _ Da_ﬁ,
) (16)
4 = —C(1+3w)a1*T +2Da~°,

2 2
where C = ‘”TTGpiai3(1+w) and D= %th;lTw p; T al.
Next we proceed to study the collapse evolution for different
values of the spatial curvature. We assume that the star begins
its contraction phase from a stable situation, i.e. a(t;)) = 0,
where £ is the initial time at which the collapse commences.

Thus, from the first part of (16) we find
2C _ _
k= [3 —a" ‘)} Da; 1), (17)

Depending on the sign of the expression in double brack-
ets, the constant k may be either positive, negative or zero.
Therefore we may write

k>0 %>ai3(w_l),
18
k < O 2C < 3(U)—1) ( )
= D =9 :

Let us consider the dust fluid (w = 0) for which the solu-
tion of (k = 0) clearly represents an expanding solution. For
the case (k < 0) the collapse velocity is non-real which is
physically implausible [76]. Thus the only remaining case is
k > 0 for which we are to investigate the collapse dynamics
for large and small values of the scale factor, i.e., the early
and late stages of the collapse process, respectively.

In the early stages of the collapse, the spin contribution is
negligible and thus the first part of (16) can be approximated
by

At k4 . (19)

a
Performing the transformation adé = +/kdr we get the solu-

tion

a(€) = €(1 £ cos(¥)),

(20)
1E) = k%(é =+ sin(€)) + t,

where according to Eq. (19) a; = 2C/ k.
For the collapse evolution where the scale factor has
become small enough and the spin effects are dominant, the
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Fig. 1 Time behavior of the scale factor (left panel) and the collapse velocity (right panel) for C = 1.11, a; = 1, and a(t) = 0, D = 0.08 (full

curve), and D = 0.0 (dashed curve)

k term in the first Friemann equation (16) can be neglected
compared to the rest. We then get
2C D
== -, (21)
a a

for which the solution is given by

1
9 / D |’
a(t)= a3—|—§C(t—ts)2—\/18C(t—ts) ag—%} ,

(22)

where f; > £ represents the time at which the small scale
factor regime starts at a finite value of the scale factor as < q;.
The solution (22) exhibits a bounce at a finite time, say t = fy,
where the collapse halts (a(#,) = 0) at a minimum value of
the scale factor given by

1

D17 [=Gi2p ]’
Amin = —_— = —_— ai.
min 2C 4A(2) 1

We note that for a > amin, Eq. (22) is always real.

For a physically reasonable collapse setting the weak
energy condition (WEC) must be satisfied. This condition
states that for any non-spacelike vector field T;}gf veyh >,
which for our model amounts to pefr > 0 and pefr + petr > 0.
The first inequality suggests that p > 27 G S2, while the lat-
ter implies p > 47 G S2. The first inequality with the use of
(15) gives

4A% ai \°
= 02 = pi ( 1 ) )
nGh Amin
whereby considering (14) we arrive at a/amin > 1. Since the
scale factor never reaches the values smaller than apy, this
inequality is always held implying the satisfaction of positive

energy density condition. Moreover, the second inequality

(23)

) (24)

oy . Lo
with similar calculations for dust tells us a/amin > 23. This
means that in the later stages of the collapse as governed by
a spin dominated regime, WEC is violated. Such a violation

of the weak energy condition can be compared to the models
where the quantum effects in the scenario of the collapse
have been discussed [77]. In brief, we have WEC violation
for the following interval:

(25)

1
Amin < @ < 23 apip.
3.1 Numerical analysis

In order to get a better understanding of the situation we
perform a numerical simulation for the time behavior of
the scale factor, the collapse velocity, its acceleration and
Kretschmann scalar, by solving the second part of (16)
numerically and taking the first part as the initial constraint.
The left panel of Fig. 1 shows that if the spin effects are
neglected the collapse process terminates in a spacetime sin-
gularity (dashed curve) where the scale factor vanishes at a
finite amount of comoving time. As the full curve shows,
the scale factor begins its evolution from its initial value but
deviates from the singular curve as the collapse advances.
It then reaches a minimum value (amin) at the bounce time,
t = ty, after which the collapsing phase turns into an expan-
sion. The scale factor never vanishes and hence the spacetime
is regular throughout the contracting and expanding phases.

The diagram for the speed of collapse indeed verifies such
a behavior (see the full curve in the right panel of Fig. 1)
where the collapse begins at rest with the speed changing its
sign from negative to positive values at the bounce time. The
behavior of the collapse acceleration gives us more interest-
ing results. We see that ¢ changes its sign at two inflection
points (see the left panel of Fig. 2) in such a way that for
t < t1inf the collapse undergoes an accelerated contracting
phase (@ < 0 and @ < 0). For the time interval #1jpr <t < 1y
the collapse process experiences a decelerated contracting
phase where ¢ < 0 and @ < 0. After the bounce occurs,
the scenario enters an inflationary expanding regime till the
second inflection point is reached, i.e., @ > 0 and a > 0
for #, < t < tinr. Finally a decelerating expanding phase
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Fig. 2 Time behavior of collapse acceleration (left panel) and Kretschmann scalar (right panel) for C = 1.11, a; = 1, and a(t;) = 0, D = 0.08

(full curve), and D = 0.0 (dashed curve)

commences once the collapse acceleration passes through
its second inflection point (the same cosmological scenario
has been discussed in [71]). The collapsing cloud then dis-
perses at later times. Concomitantly, the Kretschmann scalar
increases toward a maximum value but remains finite during
the whole process of contraction and expansion (see the full
curve in the right panel of Fig. 2) signaling the avoidance of
a spacetime singularity.

Now, what would happen to the formation of an apparent
horizon during the entire evolution of the collapsing cloud?
Especially we may ask: is the bounce visible or not? In order
to answer this question we proceed by recasting the metric
(10) into the double-null form:

ds? = —2d¢tde™ + R2dQ?, (26)
with the null one-forms defined as
1 a
d +=——|:dt——dr],
¢ \/i V1 —kr?
1 a
dt™ = —— [dt + —dr] . 27
No

From the above expressions we can easily find the null vector
fields as

) JIi?
a+:8g_—+:—\/§[81_73r}7

/1 _ 2
5 — agi— =2 [a,+lTkr8r] (28)

The condition for the radial null geodesics, ds? = 0,leavesus
with the two kinds of null geodesics characterized by ¢+ =

constant and { ~ = constant. The expansions along these two

congruences are given by

Ot = 2 0+ R (29)
+ = poEl

In a spherically symmetric spacetime, the Misner—Sharp
quasi-local mass which is the total mass within the radial

@ Springer
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Fig. 3 Time behavior of the apparent horizon curve for ¢ = 1 and
a(t) = 0,C = 1.11, D = 0.08 (full curve), and C = 1.11, D =0
(dashed curve)

coordinate r at the time ¢ is defined as [78-81]
R(,r)
2

_ R, 7)
== <1+

m(t,r) = (1+g""9,R(t,r)d,R(t,1))

R(t,7)?
0,6_ ).
2 +)

(30)

Therefore, it is the ratio 2m(t, r)/R(t, r) = R(t, r)* + kr?
that controls the formation or otherwise of the trapped sur-
faces so that the apparent horizon defined as the outermost
boundary of the trapped surfaces is given by the condition
04+6_ = 0 or equivalently 2m(¢, ran(t)) = R(t, ran(t)). The
equation for the apparent horizon curve then reads

R(t, ran(1)) 2 = (ﬁ)z T 31
> Fah = at) a(t)z’
or by the virtue of the first part of 16
(a@®)) = [Z—C _ D ]_% (32)
Tt =0 T et

which shows the time at which the shell labeled by r becomes
trapped. Figure 3 shows the time behavior of the apparent
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horizon where we see that, in the presence of spin effects, the
apparent horizon decreases (see the full curve) for a while to
a minimum value, where the first inflection point is reached
(a(t1inf) = 0). It then increases to a finite maximum at the
bounce time and converges again in the post-bounce regime
to the same minimum value where the acceleration vanishes
for the second time. The apparent horizon goes to infinity
at later times. In order to find the minimum value for the
apparent horizon curve we can easily extremize Eq. (31) to
get

B (213)% -
Ay = ? . (

Therefore there exists a minimum radius

1 /] 3
n = - (), 34
"min raH(ax) \/Eai (ﬂG,OiA()) (34)

for which if the boundary of the collapsing object is taken as
rb < Fmin, the apparent horizon does not develop through-
out the collapsing and expanding phases and therefore the
bounce is uncovered. From the viewpoint of Eq. (31), we
can also deduce that since the collapse velocity is bounded
the apparent horizon never converges to zero, implying that
there exists a minimum radius (the dashed red curve) below
which no horizon would form to meet the boundary of the
collapsing object. However, the apparent horizon does not
diverge at the bounce since k > 0; and to which extent it
could grow depends on the initial configuration of the stel-
lar object. When the spin effects are absent, the apparent
horizon decreases monotonically (see the dashed curve) to
finally cover the resulting singularity. There cannot be found
any minimum for the boundary of the collapsing cloud so
that the formation of the horizon can be prevented.

The existence of a minimum value for the boundary
implies that there exists a minimum value for the total mass
contained within the collapsing cloud. Let us be more pre-
cise. Using Eq. (30) we can re-write the dynamical interior
field equations (16) as

dym(t,r) = 4w Gper R(t, 1), R(t, 1),
dm(t,r) = —4wGper R(t, 1)? 8, R(t, 1), (35)

whereby integration of the first part gives

G 3 nGh: [ @ \°
ad [ 1 - i(—) |- @6
r [ 242 "\an) 0

The above expression together with (33) and (34) gives the
threshold mass confined within the radius 7y as

h
V240

Thus, if the total mass is chosen so that m < m,, there would
not exist enough mass within the collapsing cloud at the later

m(t,r) =

(37)

my = m(dy, 'min) =

stages of the collapse to get the light trapped and, as a result,
formation of the apparent horizon is avoided.
Furthermore, the time derivative of the mass function,
using the second part of (35),
72G*h?p2al

am(t,r) = A%a—(t);lﬁa(t), (38)

is negative throughout the contracting phase. This may be
interpreted as if some mass may be thrown away from the
stellar object till the bounce time is approached. At this time,
m(amin, ) = 0, which can be imagined as the whole evap-
oration of the collapsing cloud. After this time, when the
expanding phase begins, the ejected mass may be regained
since 7|(;~y,) > 0. We note that such a behavior is due to
the homogeneity of the model since all the shells of matter
collapse or expand simultaneously. For the case of dust fluid
considered here, the exterior region of the star can be mod-
eled by a Schwarzschild spacetime since the spin effects are
negligible at the early stages of the collapse. However, as the
collapse advances, the mass profile is no longer constant due
to the presence of a negative pressure, which originates from
the spin contribution. Hence, at the very late stages of the
collapse, the Schwarzschild spacetime may not be a suitable
candidate for the matching process and instead the interior
region should be smoothly matched to the exterior gener-
alized Vaidya metric [82,83]. Let us consider the exterior
spacetime in retarded null coordinates:

ds2, = f(u, ry)du® 4 2dudr, — r2(d6?* + sin® 0dg?), (39)

where f(u,ry) = 1 —2M(ry, u)/ry with M(ry, u) being the
Vaidya mass. We label the exterior coordinates as {X% ,} =
{u, ry, 0, ¢} where u is the retarded null coordinate labeling
different shells of radiation and ry is the Vaidya radius. The
above metric is to be matched through the timelike hyper-
surface ¥ given by the condition r = ry to the interior line
element given by (10). The interior coordinates are labeled
as {X i’fl} = {t, r, 0, ¢}. The induced metrics from the interior
and exterior spacetimes close to X then read

dsd oy = di? — a*(0)r}(d6? + sin® 0dg?) (40)
and

ds%ou[ = [f(u(@), rv)lf.i2 + 21;\11/2](111‘2
—r2(1)(d6* + sin® 0dg?). (41)

Matching the induced metrics give
fil + 2k =1, rot) = rpat). (42)

The unit vector fields normal to the interior and exterior
hypersurfaces can be obtained as

@ Springer
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nin = [o a0 0]
RV T |
I
nou = [y, 0,0, 3)

Lf (u, rv)i)2 + 2yu]2
The extrinsic curvature tensors for the interior and exterior
spacetimes are given by

, S R CENN-D ). €4
m __ _ In n M n 1n
Ky, =—ny, |:8y“8yb + I By _Byb i| (44)
and
Kout — _jout 82X(l)Lut + {M }OUtaX(‘))ut 8Xgut (45)
ab 2 8ya8yb vo aya ayb s
respectively, where y* = {t, 6, ¢} are coordinates on the

boundary. We note that in computing the components of
the extrinsic curvature of the interior spacetime, the general
affine connection should by utilized. However, from Egs.
(3-5) together with (8), we see that the affine connection is
finally obtained linearly with respect to the spin density ten-
sor. Therefore, by a suitable spacetime averaging, only the
Christoffel symbols would remain to be used in (44). The
non-vanishing components of the extrinsic curvature tensors
then read

K =0. K" =K% = +— 2
roa(t)
_L.‘z[ff,rvl;{ + f,ul'-{ + 3f,rvi'v] + 2(MVV - rvu)
2(fi2 + 2fyi)?
fu+ry
ro/ fi 4 20y
Matching the components of extrinsic curvatures on the
boundary give

fii+iy =1 —krg, (47)

W2Lff it 4 fott + 3 f iy + 27, — fyii) = 0. (48)

out __
Ktl -

K%Out — K@Qout — (46)

A straightforward but lengthy calculation reveals that (48)
results in f(ry,u) = f(ry) on the boundary [84]. Further-
more from (47) and the first part of (42) we get

Fy=—(1—f—kid)z, (49)

whence using the second part of (42) we readily arrive at the
following equality:

M(ry) = m(t, rp). (50)

Thus from the exterior viewpoint, Eq. (37) implies that there
can be found a mass threshold so that, for the mass distri-
butions below such a threshold, the apparent horizon would
fail to intersect the surface boundary of the collapsing cloud.
Moreover, in view of (36), we observe that as the scale fac-
tor increases in the post-bounce regime, the second term

@ Springer

decreases and vanishes at late times. This leaves us with a
Schwarzschild exterior spacetime with a constant mass.

4 Concluding remarks

We studied the process of gravitational collapse of a massive
star whose matter content is a homogeneous Weyssenhoff
fluid in the context of EC theory. Such a fluid is considered
as a perfect fluid with spin correction terms that stem from the
presence of intrinsic angular momentum of fermionic parti-
cles within a real star. The main objective of this paper was to
show that, contrary to the OS model, if the spin contributions
of the matter sources are included in the gravitational field
equations, the scenario of the collapse does not necessarily
end in a spacetime singularity. The spin effects can be negli-
gible at the early stages of the collapse, while as the collapse
proceeds, these effects would play a significant role in the
final fate of the scenario of the collapse. This situation can
be compared to the singularity removal for a FLRW space-
time in the very early universe, as we go backwards in time
[40-54]. We showed that in contrast to the homogeneous
dust collapse which leads inevitably to the formation of a
spacetime singularity, the occurrence of such a singularity is
avoided and instead a bounce occurs at the end of the con-
tracting phase. The whole evolution of the star experiences
four phases two of which are in the contracting regime and
the other two ones are in the post-bounce regime. While, in
the homogeneous dust case without spin correction terms,
the singularity is necessarily dressed by an event horizon,
the formation of such a horizon can always be prevented
by suitably choosing the surface boundary of the collapsing
star. This signals that there exists a critical threshold value
for the mass content, below which no horizon would form.
The same picture can be found in [85] where the non-minimal
coupling of gravity to fermions is allowed. Besides the model
presented here, non-singular scenarios have been reported in
the literature within various models such as f(R) theories of
gravity in the Palatini [86] and metric [87] formalisms, non-
singular cosmological settings in the presence of a spinning
fluid in the context of EC theory [88], bouncing scenarios in
brane models [89-93], and modified Gauss—Bonnet gravity
[94] (see also [95] for recent review). While the spacetime
singularities could generically occur as the end-product of
a continual gravitational collapse, it is widely believed that
in the very final stages of the collapse where the scales are
comparable to the Planck length and extreme gravity regions
are dominant, quantum corrections could generate a strong
negative pressure in the interior of the cloud to finally resolve
the classical singularity [96—107]. Finally, as we come near
the end of this paper we should point out that quantum effects
due to particle creation could possibly avoid the cosmologi-
cal [108-111] as well as astrophysical singularities [112].
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