期刊论文详细信息
The European Physical Journal C
The practical Pomeron for high energy proton collimation
M. Serluca1  J. G. Molson2  R. B. Appleby3  R. J. Barlow4  A. Toader4 
[1] CERN, 1203, Geneva, Switzerland;LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France;The Cockcroft Institute, University of Manchester, Oxford Road, M13 9PL, Manchester, UK;The University of Huddersfield, HD1 3DH, Huddersfield, UK;
关键词: Large Hadron Collider;    Differential Cross Section;    Regge Trajectory;    Integrate Cross Section;    Double Differential Cross Section;   
DOI  :  10.1140/epjc/s10052-016-4363-7
来源: Springer
PDF
【 摘 要 】

We present a model which describes proton scattering data from ISR to Tevatron energies, and which can be applied to collimation in high energy accelerators, such as the LHC and FCC. Collimators remove beam halo particles, so that they do not impinge on vulnerable regions of the machine, such as the superconducting magnets and the experimental areas. In simulating the effect of the collimator jaws it is crucial to model the scattering of protons at small momentum transfer t, as these protons can subsequently survive several turns of the ring before being lost. At high energies these soft processes are well described by Pomeron exchange models. We study the behaviour of elastic and single-diffractive dissociation cross sections over a wide range of energy, and show that the model can be used as a global description of the wide variety of high energy elastic and diffractive data presently available. In particular it models low mass diffraction dissociation, where a rich resonance structure is present, and thus predicts the differential and integrated cross sections in the kinematical range appropriate to the LHC. We incorporate the physics of this model into the beam tracking code MERLIN and use it to simulate the resulting loss maps of the beam halo lost in the collimators in the LHC.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202112163156067ZK.pdf 5440KB PDF download
  文献评价指标  
  下载次数:11次 浏览次数:10次