期刊论文详细信息
Journal of Nanobiotechnology
Nanovesicles derived from bispecific CAR-T cells targeting the spike protein of SARS-CoV-2 for treating COVID-19
Bin Li1  Yuchen Xiao1  Qingqin Tan1  Zhaoyan Zhao1  Lantian Tang1  Xiaojun Meng2  Xi Huang3  Tianchuan Zhu3  Hong Shan4  Lei Liu5 
[1] Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-Sen University, 519000, Zhuhai, Guangdong, China;Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-Sen University, 519000, Zhuhai, Guangdong, China;Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, 519000, Zhuhai, Guangdong, China;Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-Sen University, 519000, Zhuhai, Guangdong, China;Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, 519000, Zhuhai, Guangdong, China;Southern Marine Science and Engineering Guangdong Laboratory, 519000, Zhuhai, Guangdong, China;Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, 518112, Shenzhen, Guangdong, China;Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, 519000, Zhuhai, Guangdong, China;Southern Marine Science and Engineering Guangdong Laboratory, 519000, Zhuhai, Guangdong, China;Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, 518112, Shenzhen, Guangdong, China;
关键词: COVID-19;    nanovesicles;    Neutralizing antibody;    Remdesivir;    Targeted delivery;   
DOI  :  10.1186/s12951-021-01148-0
来源: Springer
PDF
【 摘 要 】

BackgroundConsidering the threat of the COVID-19 pandemic, caused by SARS-CoV-2, there is an urgent need to develop effective treatments. At present, neutralizing antibodies and small-molecule drugs such as remdesivir, the most promising compound to treat this infection, have attracted considerable attention. However, some potential problems need to be concerned including viral resistance to antibody-mediated neutralization caused by selective pressure from a single antibody treatment, the unexpected antibody-dependent enhancement (ADE) effect, and the toxic effect of small-molecule drugs.ResultsHere, we constructed a type of programmed nanovesicle (NV) derived from bispecific CAR-T cells that express two single-chain fragment variables (scFv), named CR3022 and B38, to target SARS-CoV-2. Nanovesicles that express both CR3022 and B38 (CR3022/B38 NVs) have a stronger ability to neutralize Spike-pseudovirus infectivity than nanovesicles that express either CR3022 or B38 alone. Notably, the co-expression of CR3022 and B38, which target different epitopes of spike protein, could reduce the incidence of viral resistance. Moreover, the lack of Fc fragments on the surface of CR3022/B38 NVs could prevent ADE effects. Furthermore, the specific binding ability to SARS-CoV-2 spike protein and the drug loading capacity of CR3022/B38 NVs can facilitate targeted delivery of remdesiver to 293 T cells overexpressing spike protein. These results suggest that CR3022/B38 NVs have the potential ability to target antiviral drugs to the main site of viral infection, thereby enhancing the antiviral ability by inhibiting intracellular viral replication and reducing adverse drug reactions.ConclusionsIn summary, we demonstrate that nanovesicles derived from CAR-T cells targeting the spike protein of SARS-COV-2 have the ability to neutralize Spike-pseudotyped virus and target antiviral drugs. This novel therapeutic approach may help to solve the dilemma faced by neutralizing antibodies and small-molecule drugs in the treatment of COVID-19.Graphical Abstract

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202112045637456ZK.pdf 4686KB PDF download
  文献评价指标  
  下载次数:11次 浏览次数:4次