BMC Medical Research Methodology | |
Central data monitoring in the multicentre randomised SafeBoosC-III trial – a pragmatic approach | |
Sanam Safi1  Markus Harboe Olsen2  Christian Gluud3  Janus Christian Jakobsen3  Gorm Greisen4  Mathias Lühr Hansen4  | |
[1] Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark;Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark;Department of Neuroanaesthesiology, Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark;Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark;Institute of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark;Department of Neonatology, Juliane Marie Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; | |
关键词: Central monitoring; Data quality; Data deviations; Missing data; Clinical trials; Mahalanobis distance; | |
DOI : 10.1186/s12874-021-01344-4 | |
来源: Springer | |
【 摘 要 】
BackgroundData monitoring of clinical trials is a tool aimed at reducing the risks of random errors (e.g. clerical errors) and systematic errors, which include misinterpretation, misunderstandings, and fabrication. Traditional ‘good clinical practice data monitoring’ with on-site monitors increases trial costs and is time consuming for the local investigators. This paper aims to outline our approach of time-effective central data monitoring for the SafeBoosC-III multicentre randomised clinical trial and present the results from the first three central data monitoring meetings.MethodsThe present approach to central data monitoring was implemented for the SafeBoosC-III trial, a large, pragmatic, multicentre, randomised clinical trial evaluating the benefits and harms of treatment based on cerebral oxygenation monitoring in preterm infants during the first days of life versus monitoring and treatment as usual. We aimed to optimise completeness and quality and to minimise deviations, thereby limiting random and systematic errors. We designed an automated report which was blinded to group allocation, to ease the work of data monitoring. The central data monitoring group first reviewed the data using summary plots only, and thereafter included the results of the multivariate Mahalanobis distance of each centre from the common mean. The decisions of the group were manually added to the reports for dissemination, information, correcting errors, preventing furture errors and documentation.ResultsThe first three central monitoring meetings identified 156 entries of interest, decided upon contacting the local investigators for 146 of these, which resulted in correction of 53 entries. Multiple systematic errors and protocol violations were identified, one of these included 103/818 randomised participants. Accordingly, the electronic participant record form (ePRF) was improved to reduce ambiguity.DiscussionWe present a methodology for central data monitoring to optimise quality control and quality development. The initial results included identification of random errors in data entries leading to correction of the ePRF, systematic protocol violations, and potential protocol adherence issues. Central data monitoring may optimise concurrent data completeness and may help timely detection of data deviations due to misunderstandings or fabricated data.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202109179349144ZK.pdf | 3117KB | download |