Frontiers in Pediatrics | |
Drug Disposition and Pharmacotherapy in Neonatal ECMO: From Fragmented Data to Integrated Knowledge | |
article | |
Genny Raffaeli1  Pavla Pokorna3  Karel Allegaert6  Fabio Mosca1  Giacomo Cavallaro1  Enno D. Wildschut5  Dick Tibboel5  | |
[1] Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico;Department of Clinical Sciences and Community Health, Università degli Studi di Milano;Department of Pediatrics—ICU, General University Hospital, 1st Faculty of Medicine Charles University;Department of Pharmacology, General University Hospital, 1st Faculty of Medicine Charles University;Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital;Division of Neonatology, Department of Pediatrics, Erasmus MC Sophia Children's Hospital, University Medical Center Rotterdam;Department of Development and Regeneration | |
关键词: ECMO; pharmacokinetics; pharmacodynamics; critical illness; developmental pharmacology; neonate; | |
DOI : 10.3389/fped.2019.00360 | |
学科分类:社会科学、人文和艺术(综合) | |
来源: Frontiers | |
【 摘 要 】
Extracorporeal membrane oxygenation (ECMO) is a lifesaving support technology for potentially reversible neonatal cardiac and/or respiratory failure. As the survival and the overall outcome of patients rely on the treatment and reversal of the underlying disease, effective and preferentially evidence-based pharmacotherapy is crucial to target recovery. Currently limited data exist to support the clinicians in their every-day intensive care prescribing practice with the contemporary ECMO technology. Indeed, drug dosing to optimize pharmacotherapy during neonatal ECMO is a major challenge. The impact of the maturational changes of the organ function on both pharmacokinetics (PK) and pharmacodynamics (PD) has been widely established over the last decades. Next to the developmental pharmacology, additional non-maturational factors have been recognized as key-determinants of PK/PD variability. The dynamically changing state of critical illness during the ECMO course impairs the achievement of optimal drug exposure, as a result of single or multi-organ failure, capillary leak, altered protein binding, and sometimes a hyperdynamic state, with a variable effect on both the volume of distribution (Vd) and the clearance (Cl) of drugs. Extracorporeal membrane oxygenation introduces further PK/PD perturbation due to drug sequestration and hemodilution, thus increasing the Vd and clearance (sequestration). Drug disposition depends on the characteristics of the compounds (hydrophilic vs. lipophilic, protein binding), patients (age, comorbidities, surgery, co-medications, genetic variations), and circuits (roller vs. centrifugal-based systems; silicone vs. hollow-fiber oxygenators; renal replacement therapy). Based on the potential combination of the above-mentioned drug PK/PD determinants, an integrated approach in clinical drug prescription is pivotal to limit the risks of over- and under-dosing. The understanding of the dose-exposure-response relationship in critically-ill neonates on ECMO will enable the optimization of dosing strategies to ensure safety and efficacy for the individual patient. Next to in vitro and clinical PK data collection, physiologically-based pharmacokinetic modeling (PBPK) are emerging as alternative approaches to provide bedside dosing guidance. This article provides an overview of the available evidence in the field of neonatal pharmacology during ECMO. We will identify the main determinants of altered PK and PD, elaborate on evidence-based recommendations on pharmacotherapy and highlight areas for further research.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202108180004996ZK.pdf | 968KB | download |