| Cybersecurity | |
| Cyber risk at the edge: current and future trends on cyber risk analytics and artificial intelligence in the industrial internet of things and industry 4.0 supply chains | |
| article | |
| Radanliev, Petar1  De Roure, David1  Page, Kevin1  Nurse, Jason R. C.2  Mantilla Montalvo, Rafael3  Santos, Omar3  Maddox, La’Treall3  Burnap, Pete4  | |
| [1] Oxford e-Research Centre, Engineering Sciences Department, University of Oxford;School of Computing, University of Kent;Cisco Research Centre, Research Triangle Park;School of Computer Science and Informatics, Cardiff University | |
| 关键词: Industry 4.0; Supply chain design; Transformational design roadmap; IIoT supply chain model; Decision support for information management; artificial intelligence and machine learning (AI/ML); dynamic self-adapting system; cognition engine; predictive cyber risk analytics; | |
| DOI : 10.1186/s42400-020-00052-8 | |
| 学科分类:社会科学、人文和艺术(综合) | |
| 来源: Springer | |
PDF
|
|
【 摘 要 】
Digital technologies have changed the way supply chain operations are structured. In this article, we conduct systematic syntheses of literature on the impact of new technologies on supply chains and the related cyber risks. A taxonomic/cladistic approach is used for the evaluations of progress in the area of supply chain integration in the Industrial Internet of Things and Industry 4.0, with a specific focus on the mitigation of cyber risks. An analytical framework is presented, based on a critical assessment with respect to issues related to new types of cyber risk and the integration of supply chains with new technologies. This paper identifies a dynamic and self-adapting supply chain system supported with Artificial Intelligence and Machine Learning (AI/ML) and real-time intelligence for predictive cyber risk analytics. The system is integrated into a cognition engine that enables predictive cyber risk analytics with real-time intelligence from IoT networks at the edge. This enhances capacities and assist in the creation of a comprehensive understanding of the opportunities and threats that arise when edge computing nodes are deployed, and when AI/ML technologies are migrated to the periphery of IoT networks.
【 授权许可】
CC BY
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202108110000122ZK.pdf | 1639KB |
PDF