期刊论文详细信息
eLife
A Brownian ratchet model for DNA loop extrusion by the cohesin complex
Minzhe Tang1  Torahiko L Higashi1  Frank Uhlmann1  Maxim I Molodtsov2  Georgii Pobegalov2 
[1] Chromosome Segregation Laboratory, The Francis Crick Institute, London, United Kingdom;Mechanobiology and Biophysics Laboratory, The Francis Crick Institute, London, United Kingdom;Department of Physics and Astronomy, University College London, London, United Kingdom;
关键词: Cohesin;    SMC complexes;    sister chromatid cohesion;    DNA loop extrusion;    structural biology;    biophysical simulation;    S. pombe;   
DOI  :  10.7554/eLife.67530
来源: eLife Sciences Publications, Ltd
PDF
【 摘 要 】

The cohesin complex topologically encircles DNA to promote sister chromatid cohesion. Alternatively, cohesin extrudes DNA loops, thought to reflect chromatin domain formation. Here, we propose a structure-based model explaining both activities. ATP and DNA binding promote cohesin conformational changes that guide DNA through a kleisin N-gate into a DNA gripping state. Two HEAT-repeat DNA binding modules, associated with cohesin’s heads and hinge, are now juxtaposed. Gripping state disassembly, following ATP hydrolysis, triggers unidirectional hinge module movement, which completes topological DNA entry by directing DNA through the ATPase head gate. If head gate passage fails, hinge module motion creates a Brownian ratchet that, instead, drives loop extrusion. Molecular-mechanical simulations of gripping state formation and resolution cycles recapitulate experimentally observed DNA loop extrusion characteristics. Our model extends to asymmetric and symmetric loop extrusion, as well as z-loop formation. Loop extrusion by biased Brownian motion has important implications for chromosomal cohesin function.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202107302562586ZK.pdf 4642KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:9次