期刊论文详细信息
Demonstratio mathematica
Modes, modals, and barycentric algebras: a brief survey and an additivity theorem
article
Jonathan D. H. Smith1 
[1] Department of Mathematics, Iowa State University, United States of America
关键词: entropic;    affine space;    semilattice;    convexity;    probability;    entanglement;    quasivariety;    free algebra;    hierarchical statistical mechanics;    additivity;   
DOI  :  10.1515/dema-2013-0332
学科分类:外科医学
来源: De Gruyter
PDF
【 摘 要 】

Modes are idempotent and entropic algebras. Modals are both join semilattices and modes, where the mode structure distributes over the join. Barycentric algebras are equipped with binary operations from the open unit interval, satisfying idempotence, skew-commutativity, and skew-associativity. The article aims to give a brief survey of these structures and some of their applications. Special attention is devoted to hierarchical statistical mechanics and the modeling of complex systems. An additivity theorem for the entropy of independent combinations of systems is proved.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202107200001308ZK.pdf 192KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:0次