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MODES, MODALS, AND BARYCENTRIC ALGEBRAS:

A BRIEF SURVEY AND AN ADDITIVITY THEOREM

Abstract. Modes are idempotent and entropic algebras. Modals are both join semi-
lattices and modes, where the mode structure distributes over the join. Barycentric alge-
bras are equipped with binary operations from the open unit interval, satisfying idempo-
tence, skew-commutativity, and skew-associativity. The article aims to give a brief survey
of these structures and some of their applications. Special attention is devoted to hierar-
chical statistical mechanics and the modeling of complex systems. An additivity theorem
for the entropy of independent combinations of systems is proved.
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1. Introduction

Modes are idempotent and entropic algebras, worthy of attention for two
reasons. From the standpoint of pure mathematics, the combination of idem-
potence and entropicity guarantees a number of special properties which lead
to a very rich structure, most notably the self-reproducing or fractal property
that the set of nonempty submodes of a mode itself forms a mode. In com-
bination with the join of submodes, this set of submodes forms a so-called
modal. From the standpoint of applied mathematics, modes and modals are
eminently suited to the modeling of a broad range of phenomena, especially
in the study of complex systems where traditional algebras such as rings and
modules are of little use, or at best are burdened with irrelevant extrane-
ous structure. Barycentric algebras, with binary operations indexed by the
open unit interval satisfying idempotence, skew-commutativty, and skew-
associativity, represent perhaps the prime example of modes. They model
convexity and probability, allowing extensions of these important concepts
to complex systems functioning at a number of different levels. In partic-
ular, hierarchical statistical mechanics uses barycentric algebras to extend
classical, convexity-based statistical mechanics and information theory to
the study of complex systems.

The present article aims to give an introduction to these topics, as listed
in the table of contents. Furthermore, a new additivity result is obtained
for the entropy of independent combinations of systems (Theorem 15.1). It
should be stressed that the article is intended as a brief survey. No attempt
at completeness of attribution or reference is made. Instead, readers are
referred to the extensive bibliography and notes in the monograph [16].

2. Algebras

A function τ : Ω → N is called a type, and its domain Ω is known as the
operator domain. Except in dual contexts, or to follow established notation
from an outside area such as statistical mechanics, algebraic notation (with
functions to the right of their arguments) will be employed. An algebra A
or (A,Ω) of type τ has an ωτ -ary operation

(2.1) ω : Aωτ → A; (a1, . . . , aωτ ) 7→ a1 . . . aωτω

for each operator ω. A subset B of A is a subalgebra if for each operator ω
and elements a1, . . . , aωτ of A,

(
∀ 1 ≤ i ≤ ωτ, ai ∈ B

)
⇒ a1 . . . aωτω ∈ B.

The subset B of A is a sink if for each operator ω and elements a1, . . . , aωτ
of A, (

∃ 1 ≤ i ≤ ωτ. ai ∈ B
)
⇒ a1 . . . aωτω ∈ B.
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The subset B of A is a wall if for each operator ω and elements a1, . . . , aωτ
of A, (

∀ 1 ≤ i ≤ ωτ, ai ∈ B
)
⇔ a1 . . . aωτω ∈ B.

A reduct of (A,Ω) is an algebra of the form (A,Ξ), where Ξ is a set of
operations on A derived from Ω (compare [21, §IV.1.3]). A subreduct of
(A,Ω) is a subalgebra of a reduct of (A,Ω).

3. Modes

An algebra (A,Ω) is said to be idempotent if the identity

x . . . xω = x

is satisfied for each operation ω, or equivalently, if each singleton subset {a}
of A is a subalgebra of (A,Ω). The algebra (A,Ω) is said to be entropic if
the identity (

x11 . . . x1(ω′τ)ω
′
)
. . .

(
x(ωτ)1 . . . x(ωτ)(ω′τ)ω

′
)
ω

=
(
x11 . . . x(ωτ)1ω

)
. . .

(
x1(ω′τ) . . . x(ωτ)(ω′τ)ω

)
ω′

is satisfied for all ω, ω′ in Ω, or equivalently, if each operation (2.1) is a homo-
morphism. The algebra (A,Ω) is said to be a mode if it is both idempotent
and entropic, or equivalently, if each polynomial is a homomorphism.

Proposition 3.1. The class of modes of a given type forms a variety.

Corollary 3.2. Products, quotients, limits, and colimits of modes are

modes.

Proposition 3.3. Subreducts of modes are modes.

Proposition 3.4. Given two modes (A,Ω) and (B,Ω) of the same type,

the set Hom(A,B) of homomorphisms from (A,Ω) to (B,Ω) forms a subal-

gebra of the power (B,Ω)A.

Proposition 3.5. Given two modes (A,Ω) and (B,Ω) of the same type,

the tensor product (A⊗B,Ω), defined by the adjointness

Hom (A⊗B,C) ∼= Hom(A,Hom (B,C))

for each mode (C,Ω), is again a mode of the given type.

Remark 3.6. Compare [21, §III.3.6] for tensor products of modules. Some
universal algebraic details are worked out in [3].

4. Examples of modes

Example 4.1. (Sets and trivial semigroups) Sets form modes (of empty
type). Proposition 3.3 then shows that left trivial semigroups (S, ·), with
x · y = x for all x, y in S, form modes.
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Example 4.2. (Semilattices) A semilattice (H, ·) is a set equipped with a
single idempotent, commutative, and associative binary operation. A (meet)
semilattice is an ordered set (H,≤·) in which any two elements x, y have a
greatest lower bound x · y, so that

x ≤· y ⇔ x · y = x.

A join semilattices (H,+) is defined dually, as an ordered set (H,≤+) in
which any two elements x, y have a least upper bound x+ y, so that

x ≤+ y ⇔ x+ y = y.

Semilattices are modes.

Example 4.3. (Affine spaces) Suppose that E is a unital module over a
commutative, unital ring R. A linear combination

(4.1)

n∑

i=1

xiri

is said to be affine if
∑n

i=1 ri = 1. Then E, equipped with the set of all affine
linear combinations, is a mode. Such modes are described as affine spaces

(over the ring R).

Remark 4.4. For n = 2, an affine linear combination (4.1) is conveniently
written in the form

(4.2) x1x2 r = x1(1− r) + x2r

for r in R. The Mal’tsev parallelogram (compare [19]) is the operation

(x1, x2, x3)P = x1 − x2 + x3

satisfying the identities (y, y, x)P = x = (x, y, y)P . General affine linear
combinations are derived from the Mal’tsev parallelogram and the binary
operations (4.2) for r in R.

Example 4.5. (Convex sets) An affine R-linear combination (4.1) is convex

if the coefficients ri are all non-negative. Then convex sets, as subreducts
of real affine spaces closed under all the convex linear combinations, form
modes.

5. Subalgebra modes and the fractal property

Let A be a set. Given an algebra structure (A,Ω) of type τ on A,
the power set 2A becomes an algebra structure of the same type under the
complex operations

X1 . . . Xωτ = {x1 . . . xωτω | ∀ 1 ≤ i ≤ ωτ, xi ∈ Xi}.

Let AS denote the set of nonempty subalgebras of (A,Ω). If (A,Ω) is
a mode, then AS forms a subalgebra of (2A, Ω) which is again a mode.
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Furthermore, there is a mode homomorphism

(5.1) η : (A,Ω) → (AS,Ω); a 7→ {a}

embedding (A,Ω) as an algebra of singletons in (AS,Ω). One may adjoin
the empty set to (AS,Ω) as a sink.

In a mode (A,Ω), a polytope is defined as a nonempty, finitely generated
subalgebra. (The name is taken from the convex set case of Example 4.5.)
Let AP denote the set of polytopes of the mode (A,Ω). Then AP forms a
subalgebra of (AS,Ω), and (5.1) corestricts to an embedding η : A → AP .
Again, one may adjoin the empty set to (AP,Ω) as a sink.

Example 5.1. Let (R, Ω) be the real line, considered as a convex set mode
according to Example 4.5. Then (RP,Ω) is the closed northwest halfplane
{(a, b) | a ≤ b}, again as a convex set mode. The map (5.1) embeds the real
line (R, Ω) as the diagonal edge {(a, a) | a ∈ R} of RP .

Consider the diagram

(5.2) A
η

−→ AS
η

−→ AS2 η
−→ . . .

η
−→ ASn η

−→ ASn+1 η
−→ . . .

of modes and homomorphisms, for natural numbers n. One may take the
colimit AS∞ of this diagram. Replacing S by P , one obtains a colimit AP∞.
Corollary 3.2 then yields the following.

Proposition 5.2. Let (A,Ω) be a mode of a given type. Then there are

colimit modes (AS∞, Ω) and (AP∞, Ω) of the same type, with respective

endomorphisms η : AS∞ → AS∞ and η : AP∞ → AP∞.

Example 5.3. (Supergraphs) The supergraphs of Kisielewicz [7] may be
described in the language of colimit modes. Suppose that V is a finite set (of
vertices). Consider the mode (V,∅) of empty type. Then a supergraph on
the vertex set V is a finite subset of V P∞ in which each element that is not
at the bottom level V covers exactly two elements under the membership
relation.

6. Modals

Let τ : Ω → N be a type. An algebra (D,+, Ω) is a modal if:

(a) (D,+) is a join semilattice;
(b) (D,Ω) is a mode; and
(c) ∀ ω ∈ Ω, ∀ 1 ≤ i ≤ ωτ ,

x1 . . .
(
xi + x′i

)
. . . xωτω = x1 . . . xi . . . xωτω + x1 . . . x

′

i . . . xωτω.

The final condition (c) is described as saying that the mode structure (D,Ω)
distributes over the join semilattice (D,+).
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Example 6.1. (Subalgebra modals) Let (A,Ω) be a mode. Use + to

denote the join of subalgebras of (A,Ω). Then there are modals (AS,+, Ω)
and (AP,+, Ω).

Example 6.2. (Distributive lattices, disemilattices) A distributive lattice

(D,+, ·) is a modal. Absorption may be expressed as the coincidence of the

meet semilattice order ≤· with the join semilattice order ≤+. If one relaxes

the absorption requirement, one obtains a disemilattice, with potentially dis-

tinct orders ≤· and ≤+.

Example 6.3. (Stammered semilattices) Let (H, ·) be a semilattice. Then

(H, ·, ·) is a modal: Given the commutativity, the distributivity reduces to

(x · y) · z = (x · z) · (y · z).

7. Properties of modals

(D,+, Ω) 6

- (A,Ω)

w

a1a2ω

a1a2 ωf

≤

a1f a2f ω

a1

wa1f

f

a2

w
a2f

w

Fig. 1. A convex function.

Modals serve as codomains for generalized convex functions (compare
Fig. 1). Indeed, given a mode (A,Ω) and a modal (D,+, Ω), a function
f : A → D is said to be convex if

∀ ω ∈ Ω, ∀ a1, . . . , aωτ ∈ A, a1 . . . aωτωf ≤ a1f . . . aωτfω.

In Figure 1, this condition is illustrated with a binary operation ω. Concave
functions f : A → D are defined dually.

There are three basic results valid in each modal (D.+, Ω).

Lemma 7.1. (Monotonicity Lemma) Each operation ω : Dωτ → D is

monotone.

Lemma 7.2. (Convexity Lemma) For each positive integer r,

Σr : D
r → D; (x1, . . . , xr) 7→ x1 + · · ·+ xr

is convex.



Modes, modals, and barycentric algebras 577

Lemma 7.3. (Sum-Superiority Lemma) For each operation ω, one has

ω ≤ Σωτ .

8. Barycentric algebras

Let F be a field. A unary operation of complementation is defined by

p′ = 1− p

for p ∈ F . A binary dual multiplication is defined by

p ◦ q = (p′q′)′

for p, q ∈ F . A binary implication is defined by

(8.1) p → q = if p = 0 then 1 else q/p

for p, q ∈ F . Note that for F = GF(2), the definition (8.1) recovers the usual
Boolean implication.

Let I◦ denote the open unit interval ]0, 1[ = {p ∈ R | 0 < p < 1} in R.
Then an algebra (A, I◦), with a binary operation p for each operator p ∈ I◦,
is said to be a barycentric algebra if it satisfies the identities

xx p = x

of idempotence,
xy p = yx p′

of skew-commutativity , and

xyp zq = x yz(p ◦ q → q) p ◦ q

of skew-associativity for p, q ∈ I◦. The class B of barycentric algebras forms
a variety of modes.

9. Examples of barycentric algebras

Example 9.1. (Semilattices) A semilattice (H, ·) may be construed as
a barycentric algebra (H, I◦) on setting xy p = x · y for each p ∈ I◦. In
this case, skew-commutativity and skew-associativity reduce respectively to
ordinary commutativity and associativity.

Example 9.2. (Convex sets) Using (4.2) to define binary operations for
each element p of I◦, a convex set C becomes a barycentric algebra (C, I◦).
Indeed, the class C of all convex sets forms the quasivariety of barycentric
algebras defined by the quasi-identity

xy p = xz p ⇒ y = z

of cancellation for any given element p of I◦.

Example 9.3. (The extended real line) The disjoint union R
∞ of the

convex set (R, I◦) with a singleton sink {∞} forms a barycentric algebra
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(R∞, I◦), the extended real line. Note that the two-element semilattice, a
barycentric algebra according to Example 9.1, appears as the subalgebra
{0,∞} of R∞. Note further that for each real number s, the function

s : R∞ → R
∞;x 7→ if x < ∞ then xs else ∞

is an endomorphism of R∗.

Example 9.4. (Dual barycentric algebras) For a barycentric algebra A,
the dual A∗ is defined as Hom(A,R∞) (compare Proposition 3.4). With a
natural identification, one has A ≤ A∗∗.

ab 1/2 g

w
a

w
b

wc

Fig. 2. The barycentric algebra T .

Example 9.5. (The “T”) Let T denote the union of two copies of the
closed unit interval (I, I◦), one generated by endpoints a, b and the other by
endpoints ab 2−1, c. Suppose that 〈a, b〉 ∩ 〈ab 2−1, c〉 = {ab 2−1} (Figure 2).
Define xy p =

(
ab 2−1

)
(1 − p) + yp for x ∈ 〈a, b〉 and y /∈ 〈a, b〉. As shown

by Ignatov [4], (T, I◦) forms a barycentric algebra generating a quasivariety
that covers the quasivariety of convex sets.

10. Free barycentric algebras and probability

For a set X, the free barycentric algebra XB and the free convex set XC
over X coincide. Elements or words w in XB may be interpreted as finitely-
supported probability distributions

∑
x∈X xpx over X: The probability of

a generator x is its coefficient px in the convex linear combination w =∑
x∈X xpx. For a nonempty finite set X of cardinality n, the free convex set

XC is a simplex of geometric dimension n− 1 (compare Figure 3).

Consider the closed unit interval barycentric algebra A = (I, I◦). As the
free barycentric algebra {0, 1}B, it represents one random bit. According to
the definition given in Proposition 3.5, the tensor product A ⊗ A satisfies
the same universality property as the free barycentric algebra on the direct
product {0, 1}×{0, 1} = {00, 01, 10, 11} that is illustrated in Figure 3 (com-
pare [21, III, Ex. 3.6.3] for the comparable case of modules). This picture
may be contrasted with the direct product A×A illustrated in Figure 4.
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Fig. 3. The free barycentric algebra over {00, 01, 10, 11}.

y

y

y

y

00

01 11

10

Fig. 4. The direct product {0, 1}B × {0, 1}B.

In terms of probability theory, the direct product in Figure 4 represents two
independent bits. By contrast, the tensor product in Figure 3 represents two
entangled bits.

11. Hierarchical statistical mechanics

Classical statistical mechanics may be founded on convex sets [5]. One
of the motivating applications of modes, modals, and barycentric algebras
is a hierarchical statistical mechanics that extends the classical theory to
complex systems functioning on a number of different levels.

Consider a finite set X known as the state space. The different elements of
X represent the possible states of a system. Consider a function f : X → A
from X to a barycentric algebra A that is generated by the image Xf of f .
The function f is known as the valuation function. For example, it might
be the energy function E : X → [minx∈X E(x),maxx∈X E(x)] (measured in
joules) of a real physical system X, in which case A is a closed interval in
the real line.

Elements α of A may be expressed as various barycentric algebra words∑
x∈X xfpx in the values xf of the states x under the valuation function.
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One may associate a numerical quantity with each such word, its entropy

−
∑

x∈X px log px (setting 0 log 0 = 0). The entropy is zero if px = 1 for
some state x (for example when {α} is a wall of A and |f−1{α}| = 1). The
entropy attains a maximum of log |X| if px = |X|−1 for each state x. One
thus defines the entropy function

H :A → [0, log |X|];(11.1)

α 7→ sup
{
−

∑

x∈X

px log px

∣∣∣ α =
∑

x∈X

xfpx

}
.

For a classical physical system, the thermodynamic entropy S is kH with
Boltzmann’s constant k ≈ 1.38× 10−23 joules/◦K.

Elements β of the dual barycentric algebra A∗ = Hom(A,R∞) are known
as potentials. Dual to the entropy (11.1), one then has the partition function

(11.2) Z : A∗ → [0,∞];β 7→
∑

x∈X

exp(−xfβ)

with exp(−∞) = 0. For a classical physical system in equilibrium at a
temperature of T ◦K, the potential β :

[
minx∈X E(x),maxx∈X E(x)

]
→ R

∗

is multiplication by the scalar 1/kT , and the Helmholtz free energy F (in
joules) is given by −kT logZ(β).

Physicists understand partition functions as generating functions. For
mathematicians, an example from number theory may be helpful. For a
positive integer N , the state space is {1, 2, . . . , N}. The valuation is the
logarithm function log : {1, 2, . . . , N} → [0, logN ]. For a real number s,
consider the potential s : [0, logN ] → R

∗; r 7→ rs. Then the partition

function is the partial sum Z(s) =
∑N

n=1 n
−s of the Riemann zeta function

ζ(s) =
∑

∞

n=1 n
−s.

12. Independent systems

For the study of independent systems, such as the independent bits of
Figure 4, an elementary lemma of universal algebra is fundamental.

Lemma 12.1. Suppose that idempotent algebras Mi of a given type are

generated by respective subsets Yi, for i = 1, 2. Then the product algebra

M1 ×M2 is generated by Y1 × Y2.

Proof. Consider respective elements mi of Mi, with mi = y1i . . . yniiui for
suitable ni-ary derived operations ui and elements yji of Yi. Then

(m1,m2) = (y11 . . . yn11u1, y12 . . . yn22u2)

=
(
(y11 . . . yn11u1) . . . (y11 . . . yn11u1)u2, y12 . . . yn22u2

)

= (y11 . . . yn11u1, y12) . . . (y11 . . . yn11u1, yn22)u2
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= (y11 . . . yn11u1, y12 . . . y12u1) . . . (y11 . . . yn11u1, yn22 . . . yn22u1)u2

=
(
(y11, y12) . . . (yn11, y12)u1

)
. . .

(
(y11, yn22) . . . (yn11, yn22)u1

)
u2.

Here, the second and fourth equalities are instances of idempotence, while
the third and fifth equalities reflect the componentwise structure of M1×M2.
Thus an arbitrary element (m1,m2) of M1 ×M2 is exhibited as an element
of the subalgebra of M1 ×M2 generated by Y1 × Y2.

Remark 12.2. It is essential to make the assumption of idempotence in
Lemma 12.1: While the additive group M1 = M2 = (Z/2,+, 0) of integers
modulo 2 is generated by the subset Y1 = Y2 = {1}, the set Y1 × Y2 only
generates the diagonal subgroup {(0, 0), (1, 1)} of M1 ×M2.

Now consider two valuation functions fi : Xi → Ai with Ai = 〈Xifi〉, for
i = 1, 2.

Corollary 12.3. Suppose that the codomains Ai of the valuation func-

tions fi are generated by their respective images Xifi. Then the product

algebra A1 ×A2 is generated by (X1 ×X2)(f1 × f2).

Proof. Barycentric algebras are idempotent.

In the context of Corollary 12.3, the system represented by the state space
X1×X2 and the valuation function f1×f2 : X1×X2 → A1×A2 is considered
as an independent combination of the constituent systems represented by
the respective valuation functions fi : Xi → Ai. Define the (homomorphic)
projections πi : A1×A2 → Ai; (α1, α2) 7→ αi. Then for constituent potentials
βi ∈ A∗

i , define

(12.1) β1 ⊕ β2 : A1 ×A2 → R
∞; (α1, α2) 7→ α1β1 + α2β2.

Since β1 ⊕ β2 = (π1β1)(π2β2) 2
−1 2, it follows from Proposition 3.4 and

Example 9.3 that (12.1) is a potential of A1×A2. One then has the following
multiplicative property of partition functions.

Lemma 12.4. Suppose that the respective partition functions of the systems

X1, X2, and X1 ×X2 are Z1, Z2, and Z. Then for respective potentials βi
of Ai,

Z(β1 ⊕ β2) = Z1(β1)Z2(β2).

Proof. Using (11.2), one computes

Z(β1 ⊕ β2) =
∑

(x1,x2)∈X1×X2

exp
(
− (x1f1, x2f2)(β1 ⊕ β2)

)

=
∑

(x1,x2)∈X1×X2

exp(−x1f1β1 − x2f2β2)
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=
∑

(x1,x2)∈X1×X2

exp(−x1f1β1) exp(−x2f2β2)

=
∑

x1∈X1

exp(−x1f1β1)
∑

(x2∈X2

exp(−x2f2β2)

= Z1(β1)Z2(β2).

Note that the third equality remains valid if xifiβi = ∞ for some i.

13. Superadditivity

A basic property of the entropy function (11.1) is its superadditivity for
independent systems.

Proposition 13.1. For i = 1, 2, consider constituent systems represented

by valuation functions fi : Xi → Ai, with respective entropy functions Hi.

Suppose that the valuation function f1 × f2 : X1 × X2 → A1 × A2 of the

independent combination of the constituent systems has entropy function H.

Then

(13.1) H
(
(α1, α2)

)
≥ H1(α1) +H2(α2)

for elements αi of Ai.

Proof. Given ε > 0, suppose

αi =
∑

xi∈Xi

xifipxi

with
−

∑

xi∈Xi

pxi
log pxi

> H(αi)−
ε

2

for i = 1, 2. Then

(α1, α2) =
( ∑

x1∈X1

x1f1px1
,
∑

x2∈X2

x2f2px2

)

=
∑

(x1,x2)∈X1×X2

(x1f1, x2f2)px1
px2

.

By (11.1),

H
(
(α1, α2)

)
≥ −

∑

(x1,x2)∈X1×X2

px1
px2

log (px1
px2

)

= −
∑

(x1,x2)∈X1×X2

px1
px2

(log px1
+ log px2

)

= −
∑

x1∈X1

(px1
log px1

)
∑

x2∈X2

px2
−

∑

x2∈X2

(px2
log px2

)
∑

x1∈X1

px1



Modes, modals, and barycentric algebras 583

= −
∑

x1∈X1

px1
log px1

−
∑

x2∈X2

px2
log px2

> H (α1) +H (α2)− ε.

Since H
(
(α1, α2)

)
> H (α1)+H (α2)− ε holds for all positive ε, the desired

inequality (13.1) follows.

14. Legendre transforms

The set R
∞ of extended reals carries a modal structure (R∞,max, I◦)

which may be used as the codomain for convex and concave functions whose
domain is a barycentric algebra. One then has the following Legendre trans-
form theorem for hierarchical statistical mechanics [16, Th. 9.8.2].

Theorem 14.1. Let X be a finite state space. Let f : X → A be a

valuation function, taking values in a barycentric algebra A that is generated

by the image Xf . Then:

(a) ∀ α ∈ A, ∀ β ∈ A∗, αβ ≥ H(α)− logZ(β).
(b) − logZ : A∗ → R

∞ is concave, with

∀ β ∈ A∗, − logZ(β) = inf{αβ −H(α) | α ∈ A}.

(c) H : A → [0, |X|] is concave, with

∀ α ∈ A, H(α) = inf{αβ + logZ(β) | β ∈ A∗}.

The Legendre transform theorem may be illustrated on an example from
semilattice character theory. Suppose that A is a finite (join) semilattice,
considered as a state space. As the valuation, take the identity function
idA : A → A. Consider the two-element semilattice S = {0,∞} inside R

∞

(compare Example 9.3). Recall that a character of the semilattice A is a
semilattice homomorphism χ : A → S. For an element a of A, define the
principal wall [a] = {x ∈ A | x ≤ a}. Then define the character

â : A → S;x 7→ if x ∈ [a] then 0 else ∞.

The concavity of − logZ : A∗ → R
∞ and H : A → [0, log |A|] give the

respective inequalities∣∣[a] ∩ [b]
∣∣ ≤

∣∣[a]
∣∣1−p∣∣[b]

∣∣p ≤
∣∣[a] ∪ [b]

∣∣
for p ∈ I◦ and a, b ∈ A.

15. Additivity

Proposition 13.1 gave a superadditivity inequality for the entropy of an
independent combination of constituent systems. The Legendre transform
enables that result to be refined to an additivity, a dual of the recast version

− logZ(β1 ⊕ β2) = − logZ1(β1)− logZ2(β2)

of Lemma 12.4.
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Theorem 15.1. For i = 1, 2, consider constituent systems represented

by valuation functions fi : Xi → Ai, with respective entropy functions Hi.

Let f : X → A be the valuation function f1 × f2 : X1 × X2 → A1 ×
A2 of the independent combination of the constituent systems, with entropy

function H. Then

H
(
(α1, α2)

)
= H1(α1) +H2(α2)

for elements αi of Ai.

Proof. Proposition 13.1 already gives the superadditivity inequality

H
(
(α1, α2)

)
≥ H1(α1) +H2(α2).

It remains to establish the reverse inequality (subadditivity). Given ε > 0,
Theorem 14.1(c) shows that there are potentials βi such that

αiβi + logZi(βi) < Hi(αi) +
ε

2
.

Then by Theorem 14.1(a), (12.1), and Lemma 12.4,

H
(
(α1, α2)

)
≤ (α1, α2)(β1 ⊕ β2) + logZ(β1 ⊕ β2)

= α1β1 + logZ1(β1) + α2β2 + logZ2(β2)

< H1(α1) +H2(α2) + ε.

Since the inequality H
(
(α1, α2)

)
< H1(α1)+H2(α2)+ε holds for all positive

constants ε, the desired subadditivity follows.

16. A toy model for complex systems

Complex systems are characterized by their function on many different
levels. While there are already mathematical techniques (such as multiscale
methods in numerical analysis) to deal with systems whose levels are com-
parable, truly complex systems involve levels that differ by more than a
mere rescaling. This phenomenon is exhibited in biology by the levels of
demography and ecology. Demography deals with the internal (age or stage)
structure of a single species. Ecology is concerned with competition between
different species. This section presents a toy model to show how barycentric
algebras are able to handle such complexity.

g

w
A2

w

A1

wB

Fig. 5. Demographic and ecological levels
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Consider two species, A and B. Species B is unstructured, while species
A exists in two stages, A1 and A2. Ecologically, the two species are in
competition for a limited supply of food. This competition is expressed
by the specification that the total number of individuals in species B and
species A (regardless of stage) is held constant. The system is modeled
by the barycentric algebra T (compare Example 9.5) that is illustrated in
Figure 5. Demographic states (mixes of the stages A1 and A2) appear as
elements of the subalgebra 〈A1, A2〉, while ecological states are elements of
the subalgebra 〈A1A2 2−1, B〉. The biological point is that, when it comes
to competition between the species A and B, it does not matter to which
stage a particular individual of species A happens to belong. Thus at the
ecological level, each particular individual of species A is represented by
a uniform mix A1A2 2−1 of the two stages.

It is curious to observe how the barycentric algebra T , arising in Ignatov’s
abstract universal-algebraic classification of the quasivarieties of barycentric
algebras [4], is now able to capture the key features of this toy model of
a complex system.

17. Other applications, developments, and problems

The topics chosen for this survey represent no more than a sample of the
range of work being done in the theory and practice of modes, modals, and
barycentric algebras. Readers may find a more comprehensive treatment,
current at the turn of the millennium, in [16]. To complete the present
survey, a supplementary list of applications, developments, and problems is
appended:

(1) Classical real-valued support functions describe compact convex sets [8,
pp. 106, 144, 231]. For arbitrary convex sets, modal theory provides
support functions taking values in more general modals than the real
line modal (R,max, I◦) used for Minkowski support functions [2, 13].

(2) The transition from affine geometry to projective geometry is usually
made in an ad hoc fashion by adjoining a hyperplane at infinity. Modal
theory provides a natural, fully invariant way to make the transition,
based on the universal-algebraic technique of replication [12].

(3) Modes known as differential groupoids provide a purely algebraic basis
for elementary differential calculus [14].

(4) Cancellative modes (of arbitrary type) embed as subreducts of affine
spaces over commutative, unital rings [15]. Binary modes embed as
subreducts of semiaffine spaces over commutative, unital semi-rings [6].
The problem of embedding general modes as subreducts of semiaffine
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spaces remained open for some time, until examples of non-embeddable
modes were provided by Stanovský [22] and Stronkowski [23].

(5) Barycentric algebras provide an efficient way to determine all the em-
beddings of a finite poset into linear orders [1].

(6) The existence of a full duality for barycentric algebras remains as one of
the major open problems of the theory. Certainly the Legendre trans-
form presented in §14 offers one kind of duality (especially as illustrated
by the example of finite semilattices). Other fragments of a duality have
appeared in [1, 9, 10, 11].

(7) The free barycentric algebra functor is used to define the type of coal-
gebras that yield permutation representations of quasigroups, models
of approximate symmetry that generalize exact symmetry as given by
permutation representations of groups [20].

(8) A more abstract axiomatization of barycentric algebras is given in [18],
allowing interpretations of Boolean algebras and B-sets. In [17], this
formulation is used to translate Boolean logic automatically into a logic
based on barycentric algebras, providing accurate models of the kind of
“fuzzy” logic used by cells in gene expression.
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