期刊论文详细信息
Demonstratio mathematica
On monoids of injective partial selfmaps almost everywhere the identity
article
Ivan Chuchman1  Oleg Gutik1 
[1] Department of Mechanics and Mathematics, Ivan Franko Lviv National University
关键词: topological semigroup;    semitopological semigroup;    topological inverse semigroup;    semigroup of bijective partial transformations;    symmetric inverse semigroup;    free semilattice;    ideal;    congruence;    semigroup with the F-property;    Baire space;    hereditary Baire space;    embedding;   
DOI  :  10.1515/dema-2013-0340
学科分类:外科医学
来源: De Gruyter
PDF
【 摘 要 】

In this paper we study the semigroup ℐλ∞${\cal I}_\lambda ^\infty $ of injective partial selfmaps almost everywhere the identity of a set of infinite cardinality λ . We describe the Green relations on ℐλ∞${\cal I}_\lambda ^\infty $, all (two-sided) ideals and all congruences of the semigroup ℐλ∞${\cal I}_\lambda ^\infty $. We prove that every Hausdorff hereditary Baire topology τ on ℐλ∞${\cal I}_\lambda ^\infty $ such that (ℐλ∞${\cal I}_\lambda ^\infty $, τ ) is a semitopological semigroup is discrete and describe the closure of the discrete semigroup ℐλ∞${\cal I}_\lambda ^\infty $ in a topological semigroup. Also we show that for an infinite cardinal λ the discrete semigroup ℐλ∞${\cal I}_\lambda ^\infty $ does not embed into a compact topological semigroup and construct two non-discrete Hausdorff topologies turning ℐλ∞${\cal I}_\lambda ^\infty $ into a topological inverse semigroup.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202107200001290ZK.pdf 247KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:1次