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ON MONOIDS OF INJECTIVE PARTIAL SELFMAPS

ALMOST EVERYWHERE THE IDENTITY

Abstract. In this paper we study the semigroup I ∞

λ of injective partial selfmaps
almost everywhere the identity of a set of infinite cardinality λ. We describe the Green
relations on I ∞

λ , all (two-sided) ideals and all congruences of the semigroup I ∞

λ . We
prove that every Hausdorff hereditary Baire topology τ on I ∞

ω such that (I ∞

ω , τ) is a
semitopological semigroup is discrete and describe the closure of the discrete semigroup
I ∞

λ in a topological semigroup. Also we show that for an infinite cardinal λ the discrete
semigroup I ∞

λ does not embed into a compact topological semigroup and construct two
non-discrete Hausdorff topologies turning I ∞

λ into a topological inverse semigroup.

1. Introduction and preliminaries

In this paper all spaces are assumed to be Hausdorff. Furthermore we
shall follow the terminology of [3, 5, 7, 9, 23]. By ω we shall denote the first
infinite cardinal and by |A| the cardinality of the set A. If Y is a subspace
of a topological space X and A ⊆ Y , then by clY (A) and IntY (A) we shall
denote the topological closure and the interior of A in Y , respectively.

For a semigroup S we denote the semigroup S with the adjoined unit by
S1 (see [5]).

An algebraic semigroup S is called inverse if for any element x ∈ S
there exists a unique element x−1 ∈ S (called the inverse of x) such that
xx−1x = x and x−1xx−1 = x−1. If S is an inverse semigroup, then the
function inv : S → S which assigns to every element x of S its inverse element
x−1 is called inversion.

If S is an inverse semigroup, then by E(S) we shall denote the band (i.e.,
the subsemigroup of idempotents) of S. If the band E(S) is a non-empty
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subset of S, then the semigroup operation on S determines a partial order
6 on E(S): e 6 f if and only if ef = fe = e. This order is called natural. A
semilattice is a commutative semigroup of idempotents. A semilattice E is
called linearly ordered or a chain if the semilattice operation induces a linear
natural order on E. A maximal chain of a semilattice E is a chain which
is properly contained in no other chain of E. The Axiom of Choice implies
the existence of maximal chains in any partially ordered set. According to
[21, Definition II.5.12] a chain L is called an ω-chain if L is isomorphic to
{0,−1,−2,−3, . . .} with the usual order 6. Let E be a semilattice and
e ∈ E. We denote ↓e = {f ∈ E | f 6 e} and ↑e = {f ∈ E | e 6 f}.
By (P<ω(λ),∪) we shall denote the free semilattice with identity over a
cardinal λ > ω, i.e., P<ω(λ) is the set of all finite subsets of λ with the
binary operation a · b = a ∪ b, for a, b ∈ P<ω(λ).

If S is a semigroup, then we shall denote by R, L , J , D and H the
Green relations on S (see [5]):

aRb if and only if aS1 = bS1;

aL b if and only if S1a = S1b;

aJ b if and only if S1aS1 = S1bS1;

D = L ◦ R = R ◦ L ;

H = L ∩ R.

The relation J induced a quasi-order 6J on S as follows:

a 6J b if and only if S1aS1 ⊆ S1bS1,

for a, b ∈ S. This implies that the inclusion order among two-sided ideals of
S induces a partial order among the J -equivalence classes:

Ja 4 Jb if and only if S1aS1 ⊆ S1bS1,

for a, b ∈ S, where by Ja we denote the J -class in S which contains an
element a ∈ S (see [17, Section 2.1]). Then we may thus regard S/J with
the relation 6 as a partially ordered set.

A semigroup S is called simple if S does not contain proper two-sided
ideals.

A semitopological (resp. topological) semigroup is a topological space to-
gether with a separately (resp. jointly) continuous semigroup operation.
An inverse topological semigroup with the continuous inversion is called a
topological inverse semigroup.

In the remainder of the paper λ denotes an infinite cardinal.
Let Iλ denote the set of all partial one-to-one transformations of an

infinite cardinal λ together with the following semigroup operation: x(αβ) =
(xα)β if x ∈ dom(αβ) = {y ∈ domα | yα ∈ domβ}, for α, β ∈ Iλ. The
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semigroup Iλ is called the symmetric inverse semigroup over the cardinal
λ (see [5]). The symmetric inverse semigroup was introduced by Wagner [25]
and it plays a major role in the theory of semigroups.

A partial map α ∈ Iλ is called almost everywhere the identity if the set
λ \ domα is finite and (x)α 6= x only for finitely many x ∈ λ. We denote

I ∞
λ = {α ∈ Iλ | α is almost everywhere the identity}.

Obviously, I ∞
λ is an inverse subsemigroup of the semigroup Iω. The semi-

group I ∞
λ is called the semigroup of injective partial selfmaps almost every-

where the identity of λ. We shall denote every element α of the semigroup
I ∞

λ by (
x1 · · · xn

y1 · · · yn

∣∣∣∣∣A
)

and this means that the following conditions hold:

(i) A is the maximal subset of λ with the finite complement such that
α|A : A→ A is an identity map;

(ii) {x1, . . . , xn} and {y1, . . . , yn} are finite (not necessary non-empty) sub-
sets of λ \A; and

(iii) α maps xi into yi for all i = 1, . . . , n.

We denote the identity of the semigroup I ∞
λ by I.

Many semigroup theorists have considered topological semigroups of
(continuous) transformations of topological spaces. Bĕıda [2], Orlov [19, 20],
and Subbiah [24] have considered semigroup and inverse semigroup topolo-
gies on semigroups of partial homeomorphisms of some classes of topological
spaces.

Gutik and Pavlyk [12] considered the special case of the semigroup I n
λ :

an infinite topological semigroup of λ×λ-matrix units Bλ. They showed that
an infinite topological semigroup of λ × λ-matrix units Bλ does not embed
into a compact topological semigroup and that Bλ is algebraically h-closed
in the class of topological inverse semigroups. They also described the Bohr
compactification of Bλ, minimal semigroup and minimal semigroup inverse
topologies on Bλ.

Gutik, Lawson and Repovš [11] introduced the notion of a semigroup
with a tight ideal series and investigated their closures in semitopological
semigroups, in particular, in inverse semigroups with continuous inversion.
As a corollary they showed that the symmetric inverse semigroup of finite
transformations I n

λ of infinite cardinal λ is algebraically closed in the class of
(semi) topological inverse semigroups with continuous inversion. They also
derived related results about the nonexistence of (partial) compactifications
of semigroups with a tight ideal series.
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Gutik and Reiter [14] showed that the topological inverse semigroup I n
λ

is algebraically h-closed in the class of topological inverse semigroups. They
also proved that a topological semigroup S with countably compact square
S×S does not contain the semigroup I n

λ for infinite cardinals λ and showed
that the Bohr compactification of an infinite topological semigroup I n

λ is
the trivial semigroup.

In [15] Gutik and Reiter showed that the symmetric inverse semigroup
of finite transformations I n

λ of infinite cardinal λ is algebraically closed in
the class of semitopological inverse semigroups with continuous inversion.
Also there they described all congruences on the semigroup I n

λ and all
compact and countably compact topologies τ on I n

λ such that (I n
λ , τ) is a

semitopological semigroup.
Gutik, Pavlyk and Reiter [13] showed that a topological semigroup of

finite partial bijections I n
λ of an infinite cardinal with a compact subsemi-

group of idempotents is absolutely H-closed. They proved that no Hausdorff
countably compact topological semigroup and no Tychonoff topological semi-
group with pseudocompact square contain I n

λ as a subsemigroup. They
proved that every continuous homomorphism from a topological semigroup
I n

λ into a Hausdorff countably compact topological semigroup or Tychonoff
topological semigroup with pseudocompact square is annihilating. They also
gave sufficient conditions for a topological semigroup I 1

λ to be non-H-closed
and showed that the topological inverse semigroup I 1

λ is absolutely H-closed
if and only if the band E(I 1

λ ) is compact [13].
In [16] Gutik and Repovš studied the semigroup Iր

∞(N) of partial cofinite
monotone bijective transformations of the set of positive integers N. They
showed that the semigroup Iր

∞(N) has algebraic properties similar to the
bicyclic semigroup: it is bisimple and all of its non-trivial group homomor-
phisms are either isomorphisms or group homomorphisms. They proved that
every locally compact topology τ on Iր

∞(N) such that (Iր
∞(N), τ) is a topo-

logical inverse semigroup, is discrete and described the closure of (Iր
∞(N), τ)

in a topological semigroup.
In [4] Gutik and Chuchman studied the semigroup I �ր

∞ (N) of partial
co-finite almost monotone bijective transformations of the set of positive
integers N. They showed that the semigroup I �ր

∞ (N) has algebraic properties
similar to the bicyclic semigroup: it is bisimple and all of its non-trivial group
homomorphisms are either isomorphisms or group homomorphisms. Also
they proved that every Baire topology τ on I �ր

∞ (N) such that (I �ր
∞ (N), τ) is

a semitopological semigroup is discrete, described the closure of (I �ր
∞ (N), τ)

in a topological semigroup and constructed non-discrete Hausdorff semigroup
topologies on the semigroup I �ր

∞ (N).
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In this paper we study the semigroup I ∞
λ of injective partial selfmaps

almost everywhere the identity of a set of infinite cardinality λ. We describe
the Green relations on I ∞

λ , all (two-sided) ideals and all congruences of the
semigroup I ∞

λ . We prove that every Hausdorff hereditary Baire topology
τ on I ∞

ω such that (I ∞
ω , τ) is a semitopological semigroup is discrete and

describe the closure of the discrete semigroup I ∞
λ in a topological semi-

group. Also we show that for an infinite cardinal λ the discrete semigroup
I ∞

λ does not embed into a compact topological semigroup and construct
two non-discrete Hausdorff topologies turning I ∞

λ into a topological inverse
semigroup.

2. Algebraic properties of the semigroup I ∞
λ

The definition of the semigroup I ∞
λ implies the following proposition:

Proposition 2.1. A partial map α ∈ Iλ is an element of the semigroup
I ∞

λ if and only if the following assertions hold:

(i) |λ \ domα| = |λ \ ranα|; and
(ii) there exists a subset A ⊆ domα∩ ranα such that λ \A is a finite subset

of λ and the restriction α|A : A→ A is the identity map.

Proposition 2.2.

(i) An element α of the semigroup I ∞
λ is an idempotent if and only if

(x)α = x for every x ∈ domα.
(ii) If ε, ι ∈ E(I ∞

λ ), then ε 6 ι if and only if dom ε ⊆ dom ι.
(iii) The semilattice E(I ∞

λ ) is isomorphic to (P<ω(λ),∪) under the map-
ping (ε)h = λ \ dom ε.

(iv) Every maximal chain in E(I ∞
λ ) is an ω-chain.

(v) αRβ in I ∞
λ if and only if domα = domβ.

(vi) αL β in I ∞
λ if and only if ranα = ran β.

(vii) αH β in I ∞
λ if and only if domα = domβ and ranα = ranβ.

(viii) αDβ in I ∞
λ if and only if |λ \ domα| = |λ \ domβ|.

(ix) If n is a non-negative integer, then for every α, β ∈ I ∞
λ such that

|λ\domα| = |λ\domβ| = n there exist γ, δ ∈ I ∞
λ such that α = γ·β·δ

and |λ \ dom γ| = |λ \ dom δ| = n.
(x) For every non-negative integer n the set In = {α ∈ I ∞

λ | |λ\domα| >
n} is an ideal in I ∞

λ . Moreover, for every ideal I in I ∞
λ there exists

an integer n > 0 such that I is equal to In.
(xi) D = J in I ∞

λ .
(xii) If λ1 and λ2 are infinite cardinals such that λ1 6 λ2 then I ∞

λ1
is a

subsemigroup of the semigroup I ∞
λ2

.
(xiii) (I ∞

λ /J ,4) is an ω-chain for any infinite cardinal λ.
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Proof. Statements (i)− (iv) are trivial and they follow from the definition
of the semigroup I ∞

λ .
(v) Let be α, β ∈ I ∞

λ such that αRβ. Since αI ∞
λ = βI ∞

λ and I ∞
λ

is an inverse semigroup, Theorem 1.17 [5] implies that αI ∞
λ = αα−1I ∞

λ ,
βI ∞

λ = ββ−1I ∞
λ and hence αα−1 = ββ−1. Therefore we get that domα =

domβ.
Conversely, let be α, β ∈ I ∞

λ such that domα = domβ. Then αα−1 =
ββ−1. Since I ∞

λ is an inverse semigroup, Theorem 1.17 [5] implies that
αI ∞

λ = αα−1I ∞
λ = βI ∞

λ and hence αI ∞
λ = βI ∞

λ .
The proof of statement (vi) is similar to (v).
Statement (vii) follows from (v) and (vi).
(viii) Let α, β ∈ I ∞

λ be such that αDβ. Then there exists γ ∈ I ∞
λ

such that αL γ and γRβ. Therefore by statements (v) and (vi) we have
that ranα = ran γ and dom γ = domβ. Then Proposition 2.1 implies that
|λ \ ran γ| = |λ \ dom γ| and |λ \ ran β| = |λ \ domβ|, and hence we get that
|λ \ domα| = |λ \ domβ|.

Let α and β are elements of the semigroup I ∞
λ such that |λ \ domα| =

|λ \ domβ|. Then Proposition 2.1 implies that |λ \ ranα| = |λ \ domα| and
|λ \ ranβ| = |λ \ domβ|. Let Aα and Aβ be maximal subsets of λ such that
the sets λ \ Aα and λ \ Aβ are finite and the restrictions α|Aα

: Aα → Aα

and β|Aβ
: Aβ → Aβ are identity maps. We put A = Aα ∩Aβ. Since λ \ Aα

and λ \Aβ are finite subsets of λ we conclude that λ \A is a finite subset of
λ too. Since |λ \ domα| = |λ \ domβ| < ω Proposition 2.1 implies that

| domα \ A| = | ranα \A| = | domβ \A| = | ranβ \ A| = n

for some non-negative integer n. If n = 0, then α = β. Suppose that n > 1.
Let {x1, . . . , xn} = ranα \A and {y1, . . . , yn} = domβ \ A. We define

γ =

(
y1 · · · yn

x1 · · · xn

∣∣∣∣∣A
)
.

Then by statements (v) and (vi) we have that αL γ and γRβ in I ∞
λ . Hence

αDβ in I ∞
λ .

(ix) Let α and β be arbitrary elements of the semigroup I ∞
λ such that

|λ\domα| = |λ\domβ| = n for some non-negative integer n. Let Aα and Aβ

be maximal subsets of λ such that the sets λ\Aα and λ\Aβ are finite and the
restrictions α|Aα

: Aα → Aα and β|Aβ
: Aβ → Aβ are identity maps. We put

A = Aα∩Aβ . Since λ\Aα and λ\Aβ are finite subsets of λ we conclude that
λ\A is a finite subset of λ too. Since |λ\domα| = |λ\domβ| the definition
of the semigroup I ∞

λ implies that | domα \ A| = | domβ \ A| < ω. If
domα\A = domβ \A = ∅ then α = β and hence α = γ ·β · δ for γ = δ = I.
Otherwise we put {x1, . . . , xk} = domα \ A, {y1, . . . , yk} = domβ \ A,
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b1 = (y1)β, . . . , bk = (yk)β and a1 = (x1)α, . . . , ak = (xk)α, for some positive
integer k. We define

γ =

(
x1 · · · xk

y1 · · · yk

∣∣∣∣∣A
)

and δ =

(
b1 · · · bk

a1 · · · ak

∣∣∣∣∣A
)
.

Then γ, δ ∈ I ∞
λ , |λ \ dom γ| = |λ \ dom δ| = n and α = γ · β · δ.

(x) Let α and β be arbitrary elements of the semigroup I ∞
λ . Since α

and β are injective partial selfmaps almost everywhere the identity of the
cardinal λ we conclude that

|λ \ dom(α · β)| > max{|λ \ domα|, |λ \ domβ|}.

This implies the first assertion of statement (x).
Let I be an ideal in I ∞

λ . Then the definition of the semigroup I ∞
λ

implies that there exists α ∈ I such that

|λ \ domα| = min{|λ \ dom γ| | γ ∈ I}.

Then |λ\domα| = n for some integer n > 0. Hence I ⊆ In and by statement
(ix) we get that In ⊆ I. This implies the second assertion of the statement.

Statement (xi) follows from statement (ix).

(xii) Let α =

(
x1 · · · xn

y1 · · · yn

∣∣∣∣∣A
)

be an arbitrary element of the semi-

group I ∞
λ1

and B = λ2 \ λ1. We put

α̃ =

(
x1 · · · xn

y1 · · · yn

∣∣∣∣∣A ∪B

)
.

Obviously that α̃ ∈ I ∞
λ2

. Simple verifications show that the map h : I ∞
λ1

→
I ∞

λ2
defined by the formula (α)h = α̃ is an isomorphic embedding of the

semigroup I ∞
λ1

into I ∞
λ2

.
Statement (xiii) follows from items (viii) and (xi).

Later we shall need the following proposition:

Proposition 2.3. Let λ be an arbitrary infinite cardinal. Then for every
finite subset {x1, . . . , xn} of λ the semigroups I ∞

λ and I ∞
η are isomorphic

for η = λ \ {x1, . . . , xn}.

Proof. Since λ is infinite we conclude that there exists a bijective map
f : λ → η. Then the bijection f generates a map h : I ∞

λ → I ∞
η such that

the following condition holds:

(αλ)h = αη if and only if ((x)f)αη = ((x)αλ)f for every x ∈ λ,

where αλ ∈ I ∞
λ and αη ∈ I ∞

η .
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Now we shall show that so defined map h is injective. Suppose to the
contrary that there exist distinct elements αλ, βλ ∈ I ∞

λ such that (αλ)h =
(βλ)h. We denote αη = (αλ)h and βη = (βλ)h. Then domαη = domβη
and ranαη = ran βη and since f : λ→ η is a bijective map we conclude that
domαλ = domβλ and ranαλ = ran βλ. Therefore there exists x ∈ ranαλ

such that (x)αλ 6= (x)βλ. Since (αλ)h = (βλ)h we have that ((x)f)αη =
((x)f)βη. But ((x)f)αη = ((x)αλ)f and ((x)f)βη = ((x)βλ)f and since the
map f : λ→ η is bijective we conclude that (x)αλ = (x)βλ, a contradiction.
The obtained contradiction implies that the map h : I ∞

λ → I ∞
η is injective.

Let

αη =

(
x1 · · · xn

y1 · · · yn

∣∣∣∣∣A
)

be an arbitrary element of the semigroup I ∞
η , where A ⊆ η and x1, . . . , xn,

y1, . . . , yn ∈ η. Since the map f : λ→ η is bijective we conclude that

αλ =

(
(x1)f

−1 · · · (xn)f
−1

(y1)f
−1 · · · (yn)f

−1

∣∣∣∣∣ (A)f
−1

)

is a partial bijective map from λ into λ such that the sets λ \ domαλ and
λ\ ranαλ are finite. Therefore αλ ∈ I ∞

λ and hence the map h : I ∞
λ → I ∞

η

is bijective.
Now we prove that the map h : I ∞

λ → I ∞
η is a homomorphism. We fix

arbitrary elements αλ, βλ ∈ I ∞
λ and denote αη = (αλ)h and βη = (βλ)h.

Then for every x ∈ ranαλ we have that
(
(x)f

)
(αη · βη) =

((
(x)f

)
αη

)
βη =

((
(x)αλ

)
f
)
βη =

((
(x)αλ

)
βλ

)
f

=
(
(x)(αλ · βλ)

)
f,

and hence (αλ · βλ)h = αη · βη = (αλ)h · (βλ)h.
Therefore h is an isomorphism from the semigroup I ∞

λ onto I ∞
η .

Proposition 2.4. Let λ be an arbitrary infinite cardinal. Then for every
idempotent ε of the semigroup I ∞

λ the semigroups I ∞
λ (ε) = ε · I ∞

λ · ε and
I ∞

λ are isomorphic.

Proof. Since

I ∞
λ (ε) = ε · I ∞

λ · ε = ε · I ∞
λ ∩ I ∞

λ · ε =

= {α ∈ I ∞
λ | domα ⊆ dom ε} ∩ {α ∈ I ∞

λ | ranα ⊆ ran ε} =

= {α ∈ I ∞
λ | domα ⊆ dom ε and ranα ⊆ ran ε},

Proposition 2.3 implies the assertion of the proposition.

Proposition 2.5. For every α, β ∈ I ∞
λ , both sets {χ ∈ I ∞

λ | α · χ = β}
and {χ ∈ I ∞

λ | χ · α = β} are finite. Consequently, every right translation
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and every left translation by an element of the semigroup I ∞
λ is a finite-to-

one map.

Proof. We denote S = {χ ∈ I ∞
λ | α · χ = β} and T = {χ ∈ I ∞

λ |
α−1 · α · χ = α−1 · β}. Then S ⊆ T and the restriction of any partial map
χ ∈ T to dom(α−1 · α) coincides with the partial map α−1 · β. Since every
partial map from the semigroup I ∞

λ is an injective partial selfmap almost
everywhere the identity we have that there exist maximal subsets Aα−1α and
Aα−1β in λ such that the sets λ \ Aα−1α and λ \ Aα−1β are finite and the
restrictions (α−1 · α)|A

α−1α
: Aα−1α → Aα−1α and (α−1 · β)|A

α−1β
: Aα−1β →

Aα−1β are identity maps. We put A = Aα−1α ∩ Aα−1β. Then the definition
of the semigroup I ∞

λ implies that the restrictions (α−1 · α)|A : A → A and
(α−1 ·β)|A : A→ A are identity maps and the set λ\A is finite. This implies
that the set T is finite and hence the set S is finite too.

For an arbitrary non-zero cardinal λ we denote by S∞(λ) the group of
all bijective transformations of λ with finite supports (i.e., α ∈ S∞(λ) if and
only if the set {x ∈ λ | (x)α 6= x} is finite).

The definition of the semigroup I ∞
λ and Proposition 2.4 imply the fol-

lowing proposition:

Proposition 2.6. Every maximal subgroup of the semigroup I ∞
λ is iso-

morphic to S∞(λ).

3. On congruences on the semigroup I ∞
λ

If R is an arbitrary congruence on a semigroup S, then we denote by
ΦR : S → S/R the natural homomorphisms from S onto S/R. Also we de-
note by ΩS and ∆S the universal and the identity congruences, respectively,
on the semigroup S, i. e., Ω(S) = S × S and ∆(S) = {(s, s) | s ∈ S}.

The following lemma follows from the definition of a congruence on a
semilattice:

Lemma 3.1. Let R is an arbitrary congruence on a semilattice E. Let a
and b be elements of the semilattice E such that aRb. Then

(i) aR(ab); and
(ii) if a 6 b then aRc for all c ∈ E such that a 6 c 6 b.

Proposition 3.2. Let R be an arbitrary congruence on the semigroup
I ∞

λ . Let ε and ϕ be idempotents of I ∞
λ such that εRϕ and ε 6 ϕ. If

| domϕ \ dom ε| = 1 then the following conditions hold:

(i) ϕRι for all idempotents ι ∈ ↓ϕ; and
(ii) ϕRχ for all idempotents χ ∈ I ∞

λ such that |λ \ domϕ| = |λ \ domχ|.
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Proof. (i) First we shall show that ϕRψ for all idempotents ψ ∈ ↓ε. By
Proposition 2.2 (iv) there exists a maximal (not necessary unique) ω-chain
L in E(I ∞

λ ) which contains ε and ψ. Let L0 = {ε1, . . . , εn} be a maximal
subchain in L such that ψ = εn < . . . < ε1 = ε, where n is some positive
integer. The existence of the subchain L follows from Proposition 2.2 (iv)
too. Let

xn = dom εn−1 \ dom εn, xn−1 = dom εn−2 \ dom εn−1, . . . ,

x2 = dom ε1 \ dom ε2, x1 = domϕ \ dom ε1.

We put

α1 =

(
x1

x2

∣∣∣∣∣ dom ε2

)
, α2 =

(
x2

x3

∣∣∣∣∣ dom ε3

)
, . . . ,

αn−1 =

(
xn−1

xn

∣∣∣∣∣ dom εn

)
.

Then we have that

α−1
1 · ϕ · α1 = ε1 and α−1

1 · ε1 · α1 = ε2;

α−1
2 · ε1 · α2 = ε2 and α−1

2 · ε2 · α2 = ε3;

· · · · · · · · ·

α−1
n−1 · εn−2 · αn−1 = εn−1 and α−1

n−1 · εn−1 · αn−1 = εn,

and hence ε1Rε2, ε2Rε3, . . . , εn−1Rεn. Since ϕRε we have that ϕRεn. This
completes the proof of the statement.

Let ι be an arbitrary idempotent of the semigroup I ∞
λ such that ι ∈ ↓ϕ.

We put ι0 = ε · ι. Then by previous part of the proof we have that ι0Rϕ and
hence by Lemma 3.1 we get ιRϕ.

(ii) Let χ be an arbitrary idempotent of the semigroup I ∞
λ such that

ϕ 6= χ and |λ\domϕ| = |λ\domχ|. Then ε ·χ 6 ϕ and hence by statement
(i) we get that (ε · χ)Rϕ. Since |λ \ domϕ| = |λ \ domχ| we conclude
that | domϕ \ dom(ε · χ)| = | domχ \ dom(ε · χ)|. Let be {x1, . . . , xk} =
domϕ \ dom(ε · χ) and {y1, . . . , yk} = domχ \ dom(ε · χ). We put

α =

(
x1 · · · xk

y1 · · · yk

∣∣∣∣∣ dom(ε · χ)

)
.

Then α−1 · ϕ · α = χ and α−1 · (ε · χ) · α = ε · χ. Therefore we get that
(ε · χ)Rχ and hence ϕRχ. This completes the proof of our statement.

Theorem 3.3. Let R be an arbitrary congruence on the semigroup I ∞
λ

and ε and ϕ be distinct R-equivalent idempotents of I ∞
λ . Then αRε for

every α ∈ I ∞
λ such that

|λ \ domα| > min{|λ \ domϕ|, |λ \ dom ε|}.
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Proof. In the case when α is an idempotent of the semigroup I ∞
λ the

statement of the theorem follows from Lemma 3.1 and Proposition 3.2.
Suppose that α is an arbitrary non-idempotent element of the semigroup

I ∞
λ such that |λ \ domα| > max {|λ \ domϕ|, |λ \ dom ε|}. Since I ∞

λ is an
inverse semigroup we have that α ·α−1 ·α = α and Propositions 2.1 and 2.2
imply that

|λ \ domα| = |λ \ domα−1| = |λ \ dom(α · α−1)| = |λ \ dom(α−1 · α)|

> min{|λ \ domϕ|, |λ \ dom ε|}.

Hence (α · α−1)Rε and by Proposition 3.2 we have that (α · α−1)Rι for
every idempotent ι of the semigroup I ∞

λ such that ι ∈ ↓ε. Definition of the
semigroup I ∞

λ implies that for every α ∈ I ∞
λ there exists an idempotent

ςα ∈ I ∞
λ such that α · ς = ς ·α = ς ·(α ·α−1) = ς for all idempotents ς ∈ I ∞

λ

such that ς ∈ ↓ςα. Let ν = ςα · ε. Then (α · α−1)Rν and α · ν = ν · α =
ν · (α · α−1) = ν. Therefore we get

(α)ΦR = (α · α−1 · α)ΦR = (α · α−1)ΦR · (α)ΦR = (ν)ΦR · (α)ΦR

= (ν · α)ΦR = (ν)ΦR

and αRν. Hence we have that αRε.

Proposition 3.4. Let R be an arbitrary congruence on the semigroup
I ∞

λ . Let ε be an idempotent of I ∞
λ such that |λ \ dom ε| > 1 and the

following conditions hold:

(i) there exists an idempotent ϕ ∈ I ∞
λ such that εRϕ and |λ \ domϕ| >

|λ \ dom ε|; and
(ii) does not exist an idempotent ψ ∈ I ∞

λ such that εRψ and |λ \domψ| <
|λ \ dom ε|.

Then there exists no element α of the semigroup I ∞
λ such that εRα and

|λ \ domα| < |λ \ dom ε|.

Proof. Suppose to the contrary that there exists α ∈ I ∞
λ such that εRα and

|λ \ domα| < |λ \ dom ε|. Since I ∞
λ is an inverse semigroup Lemma III.1.1

[21] implies that εRα−1 and hence εR(α · α−1). But |λ \ dom(α · α−1)| =
|λ\domα| < |λ\dom ε|, a contradiction. An obtained contradiction implies
the statement of the proposition.

Proposition 3.5. Let R be an arbitrary congruence on the semigroup
I ∞

λ . Let α and β be non-H -equivalent elements of I ∞
λ such that αRβ.

Then γRα for all γ ∈ I ∞
λ such that

|λ \ dom γ| > min{|λ \ domα|, |λ \ domβ|}.
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Proof. Since α and β are non-H -equivalent elements of the inverse semi-
group I ∞

λ we conclude that at least one of the following conditions holds:

(i) α · α−1 6= β · β−1;
(ii) α−1 · α 6= β−1 · β.

Suppose that the case α ·α−1 6= β · β−1 holds. In the other case the proof is
similar. Since I ∞

λ is an inverse semigroup Lemma III.1.1 [21] implies that
β−1

Rα−1 and hence (β · β−1)R(α · α−1). Then we have that

|λ \ domα| = |λ \ dom(α ·α−1)| and |λ \ domβ| = |λ \ dom(β · β−1)|

and hence the assumptions of the Theorem 3.3 hold. This completes the
proof of the proposition.

Proposition 3.6. Let R be an arbitrary congruence on the semigroup
I ∞

λ . If α and β are distinct H -equivalent elements of I ∞
λ such that αRβ,

then γRα for all γ ∈ I ∞
λ such that

|λ \ dom γ| > |λ \ domα|.

Proof. Since I ∞
λ is an inverse semigroup Theorem 2.20 [5] and Proposi-

tion 2.2 (viii) imply that without loss of generality we can assume that α
and β are elements of a maximal subgroup H(ε) of I ∞

λ with unity ε. Since
(α·α−1)R(β ·α−1) we can assume that α is an identity of the subgroup H(ε).
Let x ∈ domα such that (x)β 6= x. We put ε1 : domα \ {x} → domα \ {x}
be an identity map. Then ε1 · α = ε1 and ran(ε1 · β) 6= ran(ε1). There-
fore by Proposition 2.2 (vii) we get that the elements ε1 and ε1 · β are not
H -equivalent. Since |λ\dom ε1| = |λ\dom(ε1 ·β)| we have that the assump-
tions of Proposition 3.5 hold. This completes the proof of the proposition.

Theorem 3.3 and Propositions 3.4, 3.5 and 3.6 imply the following propo-
sition:

Proposition 3.7. Let R be an arbitrary congruence on the semigroup
I ∞

λ . Let α and β be distinct H -equivalent elements of I ∞
λ such that αRβ

and suppose that there does not exist γ ∈ I ∞
λ such that αRγ and |λ \

dom γ| < |λ\domα|. Then elements µ, ν ∈ I ∞
λ with |λ\domµ| < |λ\domα|

and |λ \ dom ν| < |λ \ domα| are R-equivalent if and only if µ = ν.

Definition 3.8. For every non-negative integer n we denote by Kn(I) the
congruence on the semigroup I ∞

λ generated by the ideal In, i. e., Kn(I) =
(In × In) ∪∆(I ∞

λ ). We observe that K0(I) = Ω(I ∞
λ ).

Remark 3.9. The group S∞(λ) has only one non-trivial normal subgroup:
that is a group A∞(λ) of all even permutations of the set λ (see [10, pp. 313–
314, Example] or [18]). Therefore every non-trivial homomorphism of S∞(λ)
is either an isomorphism or its image is a two-elements cyclic group.
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Definition 3.10. Fix an arbitrary non-negative integer n. We shall say
that elements α and β of the semigroup I ∞

λ are nS∞
-equivalent if the fol-

lowing conditions hold:

(i) αH β; and
(ii) |λ \ domα| = |λ \ domβ| = n.

We define a relation Kn(S∞) on the semigroup I ∞
λ as follows:

Kn(S∞) = {(α, β) | (α, β) ∈ nS∞
} ∪ (In+1 × In+1) ∪∆(I ∞

λ ).

Simple verifications show that so defined relation Kn(S∞) on I ∞
λ is an equiv-

alence relation for every non-negative integer n.

Proposition 3.11. The relation Kn(S∞) is a congruence on the semi-
group I ∞

λ .

Proof. First we consider the case when n = 0. If α and β are distinct
elements of the semigroup I ∞

λ such that αK0(S∞)β, then either α, β ∈ H(I)
or α, β ∈ I1. Suppose that α, β ∈ H(I). Then for every γ ∈ I ∞

λ we have
that either α · γ, β · γ ∈ H(I) or α · γ, β · γ ∈ I1, and similarly we get that
either γ ·α, γ ·β ∈ H(I) or γ ·α, γ ·β ∈ I1. If α, β ∈ I1 then for every γ ∈ I ∞

λ

we have that α · γ, β · γ, α · γ, β · γ ∈ I1. Therefore K0(S∞) is a congruence
on the semigroup I ∞

λ .
Suppose that n is an arbitrary positive integer. Let α and β be distinct

elements of the semigroup I ∞
λ such that αKn(S∞)β. The definition of the

relation Kn(S∞) implies that only one of the following conditions holds:

(i) |λ \ domα| = |λ \ domβ| = n; or
(ii) |λ \ domα| > n and |λ \ domβ| > n.

First we suppose that |λ\domα| = |λ\domβ| = n. Let γ be an arbitrary
element of the semigroup I ∞

λ . We consider two cases:

a) domα ⊆ ran γ; and
b) domα * ran γ.

Since the elements α and β are H -equivalent in I ∞
λ Proposition 2.2 (vii)

implies that in case a) we have that dom(γ ·α) = dom(γ ·β) and ran(γ ·α) =
ran(γ · β). Then again by Proposition 2.2 (vii) the elements γ · α and γ · β
are H -equivalent in I ∞

λ . Since domα ⊆ ran γ we get that |λ\dom(γ ·α)| =
|λ \ dom(γ · β)| = n. Hence we obtain that (γ · α)Kn(S∞)(γ · β). In case b)
we have that γ · α, γ · β ∈ In+1 and hence (γ · α)Kn(S∞)(γ · β).

The proof that the assertion αKn(S∞)β implies (α · δ)Kn(S∞)(β · δ) for
every δ ∈ I ∞

λ is similar.
Suppose that |λ \ domα| > n and |λ \ domβ| > n. Then α, β ∈ In+1.

By Proposition 2.2 (x) we have that γ · α, γ · β, α · δ, β · δ ∈ In+1 and hence
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(γ ·α)Kn(S∞)(γ ·β) and (α·δ)Kn(S∞)(β ·δ) for all γ, δ ∈ I ∞
λ . This completes

the proof of the proposition.

Definition 3.12. Fix an arbitrary non-negative integer n. We shall say
that elements α and β of the semigroup I ∞

λ are nA∞
-equivalent if the fol-

lowing conditions hold:

(i) αH β;
(ii) α · β−1 is an even permutation of the set domα; and
(iii) |λ \ domα| = |λ \ domβ| = n.

We define a relation Kn(A∞) on the semigroup I ∞
λ as follows:

Kn(A∞) = {(α, β) | (α, β) ∈ nA∞
} ∪ (In+1 × In+1) ∪∆(I ∞

λ ).

Simple verifications show that so defined relation Kn(A∞) on I ∞
λ is an

equivalence relation for every non-negative integer n.

Proposition 3.13. The relation Kn(A∞) is a congruence on the semi-
group I ∞

λ .

Proof. First we consider the case when n = 0. If α and β are distinct
elements of the semigroup I ∞

λ such that αK0(S∞)β, then either α, β ∈ H(I)
or α, β ∈ I1. Suppose that α, β ∈ H(I). Then for every γ ∈ H(I) we have
that α·γ, β ·γ, γ·α, γ·β ∈ H(I). Then (α·γ)·(β ·γ)−1 = α·γ·γ−1·β−1 = α·β−1

is an even permutation of the set λ. Also, since α·β−1 is an even permutation
of the set λ we get that (γ ·α)·(γ ·β)−1 = γ ·α·β−1·γ−1 is an even permutation
of the set λ too. For every γ ∈ I1 we have that α · γ, β · γ, γ · α, γ · β ∈ I1.
If α, β ∈ I1 then for every γ ∈ I ∞

λ we have that α · γ, β · γ, α · γ, β · γ ∈ I1.
Therefore K0(A∞) is a congruence on the semigroup I ∞

λ .
Suppose that n is an arbitrary positive integer. Let α and β be distinct

elements of the semigroup I ∞
λ such that αKn(A∞)β. The definition of the

relation Kn(A∞) implies that only one of the following conditions holds:

(i) |λ \ domα| = |λ \ domβ| = n; or
(ii) |λ \ domα| > n and |λ \ domβ| > n.

First we suppose that |λ\domα| = |λ\domβ| = n. Let γ be an arbitrary
element of the semigroup I ∞

λ . We consider two cases:

a) domα ⊆ ran γ; and
b) domα * ran γ.

Suppose case a) holds. Since the elements α and β are H -equivalent in I ∞
λ

we have that Proposition 2.2 (vii) implies that dom(γ ·α) = dom(γ · β) and
ran(γ · α) = ran(γ · β). Then again by Proposition 2.2 (vii) the elements
γ · α and γ · β are H -equivalent in I ∞

λ . Since domα ⊆ ran γ we get
that |λ \ dom(γ · α)| = |λ \ dom(γ · β)| = n. We define a partial map
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γ1 : λ ⇀ λ as follows γ1 = γ|(domα)γ−1 : (domα)γ−1 → domα. Then we get
that |λ \dom γ1| = |λ \domα| = |λ \domβ| = n, γ ·α = γ1 ·α, γ ·β = γ1 ·β
and hence (γ ·α) ·(γ ·β)−1 = (γ1 ·α) ·(γ1 ·β)

−1 = γ1 ·α ·β
−1 ·γ−1

1 . Since α ·β−1

is an even permutation of the set domα we conclude that γ1 ·α ·β−1 · γ−1
1 is

an even permutation of the set dom γ1 = (domα)γ−1. Hence we obtain that
(γ · α)Kn(A∞)(γ · β). In case b) we have that γ · α, γ · β ∈ In+1 and hence
(γ · α)Kn(A∞)(γ · β).

The proof the assertion that αKn(A∞)β implies (α · δ)Kn(A∞)(β · δ) for
every δ ∈ I ∞

λ is similar.
Suppose that |λ \ domα| > n and |λ \ domβ| > n. Then α, β ∈ In+1.

By Proposition 2.2 (x) we have that γ · α, γ · β, α · δ, β · δ ∈ In+1 and hence
(γ · α)Kn(A∞)(γ · β) and (α · δ)Kn(A∞)(β · δ), for all γ, δ ∈ I ∞

λ . This
completes the proof of the proposition.

Theorem 3.14. The family

Cong(I ∞
λ ),= {∆(I ∞

λ ),Ω(I ∞
λ )} ∪ {Kn(S∞) | n = 0, 1, 2, . . .}

∪ {Kn(A∞) | n = 0, 1, 2, . . .} ∪ {Kn(In) | n = 1, 2, . . .}

determines all congruences on the semigroup I ∞
λ .

Proof. Let R be non-identity congruence on the semigroup I ∞
λ . Since the

set of all non-negative integers with respect to the usual order 6 is well
ordered there exists a minimal non-negative integer n such that there are
two distinct elements α and β in I ∞

λ such that αRβ and

min {|λ \ domα|, |λ \ domβ|} = n,

i.e., for any non-negative integer m < n if for α and β in I ∞
λ such that αRβ

and

min {|λ \ domα|, |λ \ domβ|} = m

then α = β.
We consider two cases:

(i) |λ \ domα| 6= |λ \ domβ|; and
(ii) |λ \ domα| = |λ \ domβ|.

Suppose case (i) holds and |λ \ domα| = n < |λ \ domβ|. Then α and
β are not H -equivalent elements in I ∞

λ and hence by Proposition 3.5 we
obtain that αRγ for all γ ∈ I ∞

λ with |λ\dom γ| > n. Then Proposition 3.7
implies that µRν if and only if µ = ν for all elements µ, ν ∈ I ∞

λ such that
|λ \ domµ| < n and |λ \ dom ν| < n. Hence we get that R = Kn(I). We
observe if n = 0 then R = Ω(I ∞

λ ).
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We henceforth assume that case (ii) holds.
If α and β are not H -equivalent elements in I ∞

λ and then by Propo-
sition 3.5 we have that αRγ for all γ ∈ I ∞

λ such that |λ \ dom γ| > n.
Then Proposition 3.7 implies that µRν if and only if µ = ν for all elements
µ, ν ∈ I ∞

λ such that |λ \ domµ| < n and |λ \ dom ν| < n, and hence we
have that R = Kn(I). Also in this case if n = 0 then R = Ω(I ∞

λ ).
Suppose that α and β are H -equivalent elements in I ∞

λ and there ex-
ists no non-H -equivalent element δ of the semigroup I ∞

λ such that αRδ.
Otherwise by the previous part of the proof we have that R = Kn(I). Since
(α·α−1)R(β ·α−1) we conclude that without loss of generality we can assume
that α is an identity element of H -class H(α) which contains α and β 6= α.
Since α is an idempotent of the semigroup I ∞

λ we have that domα = ranα
and the restriction α|domα : domα → domα is an identity map. Also we
observe that the restriction of the partial map β|domα : domα → domα is
a permutation of the set domα. Therefore without loss of generality we can
consider β as a permutation of the set domα.

We consider two cases:

(1) β is an odd permutation of the set domα; and
(2) β is an even permutation of the set domα.

Suppose that β is an odd permutation of the set domα. Since H(α) is
a subgroup of the semigroup I ∞

λ we conclude that the image (H(α))ΦR of
H(α) is a subgroup in I ∞

λ /R. Since the subgroup H(α) is isomorphic to the
group S∞(λ) and the group of all even permutations A∞(λ) of the set λ is a
unique normal subgroup in S∞(λ) (see [10, pp. 313–314, Example] or [18]) we
conclude that the image (H(α))ΦR is singleton. Then by Theorem 2.20 [5]
and Proposition 2.2 (viii) for every γ ∈ I ∞

λ with |λ\dom γ| = |λ\domα| the
image (Hγ)ΦR of the H -class Hγ which contains the element γ is singleton
and hence by Propositions 3.5, 3.6 and 3.7, we get that R = Kn(S∞).

Suppose that β is an even permutation of the set domα. If the subgroup
H(α) contains an odd permutation δ of the set domα, then by previous proof
we get that R = Kn(S∞). Suppose the subgroup H(α) does not contain an
odd permutation δ of the set domα. Since the subgroup H(α) is isomorphic
to the group S∞(λ) and the group of all even permutations A∞(λ) of the
set λ is a unique normal subgroup in S∞(λ) we conclude that the image
(H(α))ΦR is a two-element subgroup in I ∞

λ /R. Then by Theorem 2.20 [5]
and Proposition 2.2 (viii) for every γ ∈ I ∞

λ with |λ \ dom γ| = |λ \ domα|
the image (Hγ)ΦR of the H -class Hγ which contains the element γ is a
two-element subset in I ∞

λ /R and hence by Propositions 3.5, 3.6 and 3.7,
we get that R = Kn(A∞).
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4. On topologizations of the free semilattice (P<ω(λ),∪)

Definition 4.1. ([4]) We shall say that a semigroup S has the F-property
if for every a, b, c, d ∈ S1 the sets {x ∈ S | a · x = b} and {x ∈ S | x · c = d}
are finite or empty.

Recall [9] an element x of a semitopological semilattice S is a local mini-
mum if there exists an open neighbourhood U(x) of x such that U(x)∩↓x =
{x}. This is equivalent to statement that ↑x is an open subset in S.

A topological space X is called Baire if for each sequence A1, A2, . . . ,
Ai, . . . of nowhere dense subsets of X the union

⋃∞
i=1Ai is a co-dense subset

of X [7]. A Tychonoff space X is called Čech complete if for every compact-
ification cX of X the remainder cX \ c(X) is an Fσ-set in cX [7].

A topological space X is called hereditary Baire if every closed subset of
X is a Baire space [7]. Every Čech complete (and hence locally compact)
space is hereditary Baire (see [7, Theorem 3.9.6]). We shall say that a
Hausdorff semitopological semigroup S is an I-Baire space if for every s ∈ S
either sS or Ss is a Baire space [4].

Remark 4.2. We observe that every left ideal Ss and every right ideal sS
of a regular semigroup S is generated by its idempotents. Therefore every
principal left (right) ideal of a regular Hausdorff semitopological semigroup
S is a closed subset of S. Hence every regular Hausdorff hereditary Baire
semitopological semigroup is a I-Baire space.

Theorem 4.3. Let S be a semilattice with the F-property. Then every
I-Baire topology τ on S such that (S, τ) is a Hausdorff semitopological semi-
lattice is discrete.

Proof. Let x be an arbitrary element of the semilattice S. We need to show
that x is an isolated point in (S, τ).

Since τ is an I-Baire topology on S we conclude that the subspace ↓x is
Baire. We denote Sx = ↓x. For every positive integer n we put

Fn = {y ∈ Sx | |↑y| = n}.

Then we have that Sx =
⋃∞

i=1 Fn. Since the topological space Sx is Baire
we conclude that there exists Fn ∈ F such that IntSx

(Fn) 6= ∅. We fix
an arbitrary y0 ∈ IntSx

(Fn). We observe that the definition of the family
{Fn | n ∈ N} implies that for every non-empty subset Fn and for any s ∈ Fn

the sets ↑s ∩ Fn and ↓s ∩ Fn are singleton. This implies that y0 is a local
minimum in Sx, i.e., ↑y0 is an open subset of S. Since the semilattice Sx
has the F-property we conclude that the Hausdorffness of S implies that x
is an isolated point in Sx. Then x is a local minimum in S and hence ↑x is
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an open subset in S. Since the semilattice S has the F-property we conclude
that the Hausdorffness of S implies that x is an isolated point in S.

Remark 4.4. We observe that the statement of Theorem 4.3 is true for a
T1-semitopological I-Baire semilattice with the F-property.

Since every Čech complete (and hence locally compact) space is heredi-
tary Baire, Theorem 4.3 implies the following corollary:

Corollary 4.5. Let S be a semilattice with the F-property. Then ev-
ery Čech complete (locally compact) topology τ on S such that (S, τ) is a
semitopological semilattice is discrete.

Since the free semilattice (P<ω(λ),∪) has F-property, Theorem 4.3 im-
plies the following corollary:

Corollary 4.6. Every Hausdorff I-Baire (Čech complete, locally com-
pact) topology τ on the free semilattice P<ω(λ) such that (P<ω(λ), τ) is a
semitopological semilattice is discrete.

5. On a topological semigroup I ∞
λ

Theorem 5.1. Every hereditary Baire topology τ on the semigroup I ∞
ω

such that (I ∞
ω , τ) is a Hausdorff semitopological semigroup is discrete.

Proof. Let α be an arbitrary element of the semigroup I ∞
ω . We need to

show that α is an isolated point in (I ∞
ω , τ).

For every non-negative integer n we denote Cn = I ∞
ω \ In+1.

By induction we shall prove that for every non-negative integer n the
following statement holds: every α ∈ Cn is an isolated point in (I ∞

ω , τ).
First we shall show that our statement is true for n = 0. We define

a family C = {{β} | β ∈ I ∞
ω }. Since the topological space (I ∞

ω , τ) is
Baire we have that the family C has an element with non-empty interior
and hence the topological space (I ∞

ω , τ) has an isolated point γ in (I ∞
ω , τ).

Then |ω \ domα| = 0 and hence statements (viii)− (xi) of Proposition 2.2
imply that there exist µ, ν ∈ I ∞

ω such that µ ·α ·ν = γ. Since translations in
(I ∞

ω , τ) are continuous we conclude that Hausdorffness of the space (I ∞
ω , τ)

and Proposition 2.5 imply that α is an isolated point in (I ∞
ω , τ).

Suppose our statement is true for all n < k, k ∈ N. We shall show that
it is true for n = k. Our assumption implies that Ik is a closed subset of
(I ∞

ω , τ). Later we shall denote by τk the topology induced from (I ∞
ω , τ)

onto Ik. Then (Ik, τk) is a Baire space. We define a family Ck = {{β} |
β ∈ Ik}. Since the topological space (Ik, τk) is Baire we have that the family
Ck has an element with non-empty interior and hence the topological space
(Ik, τk) has an isolated point γ in (Ik, τk). Let U(γ) be an open neighbour-
hood U(γ) of γ in (I ∞

ω , τ) such that U(γ) ∩ Ik = {γ}. Since (I ∞
ω , τ) is a
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semitopological semigroup we have that there exists an open neighbourhood
V (γ) of γ in (I ∞

ω , τ) such that V (γ) ⊆ U(γ) and γ · γ−1 ·V (γ) ⊆ U(γ). We
remark that γ · γ−1 · V (γ) ⊆ {γ}. Hence by Proposition 2.5 the neighbour-
hood V (γ) is finite and Hausdorffness of the space (I ∞

ω , τ) implies that γ
is an isolated point in (I ∞

ω , τ). Let α be an arbitrary element of the set
Ik \ Ik+1. Then |ω \domα| = k and hence statements (viii)− (xi) of Propo-
sition 2.2 imply that there exist µ, ν ∈ I ∞

ω such that µ · α · ν = γ. Since
translations in (I ∞

ω , τ) are continuous we conclude that Hausdorffness of
the space (I ∞

ω , τ) and Proposition 2.5 imply that α is an isolated point in
(I ∞

ω , τ). This completes the proof of our theorem.

Remark 5.2. We observe that the statement of Theorem 5.1 holds for
every topology τ on the semigroup I ∞

ω such that (I ∞
ω , τ) is a Hausdorff

semitopological semigroup and every (two-sided) ideal in (I ∞
ω , τ) is a Baire

space.

Theorem 5.1 implies the following corollary:

Corollary 5.3. Every Čech complete (locally compact) topology τ on the
semigroup I ∞

ω such that (I ∞
ω , τ) is a Hausdorff semitopological semigroup

is discrete.

Theorem 5.4. Let λ be an infinite cardinal and S be a topological semi-
group which contains a dense discrete subsemigroup I ∞

λ . If I = S\I ∞
λ 6= ∅

then I is an ideal of S.

Proof. Suppose that I is not an ideal of S. Then at least one of the following
conditions holds:

1) I · I ∞
λ * I, 2) I ∞

λ · I * I, or 3) I · I * I.

Since I ∞
λ is a discrete dense subspace of S, Theorem 3.5.8 [7] implies that

I ∞
λ is an open subspace of S. Suppose there exist a ∈ I ∞

λ and b ∈ I
such that b · a = c /∈ I. Since I ∞

λ is a dense open discrete subspace of
S the continuity of the semigroup operation in S implies that there exists
an open neighbourhood U(b) of b in S such that U(b) · {a} = {c}. But by
Proposition 2.5 the equation x · a = c has finitely many solutions in I ∞

λ .
This contradicts the assumption that b ∈ S \ I ∞

λ . Therefore b · a = c ∈ I
and hence I · I ∞

λ ⊆ I. The proof of the inclusion I ∞
λ · I ⊆ I is similar.

Suppose there exist a, b ∈ I such that a · b = c /∈ I. Since I ∞
λ is a dense

open discrete subspace of S, the continuity of the semigroup operation in
S implies that there exist open neighbourhoods U(a) and U(b) of a and b
in S, respectively, such that U(a) · U(b) = {c}. But by Proposition 2.5 the
equations x · b0 = c and a0 · y = c have finitely many solutions in I ∞

λ . This
contradicts the assumption that a, b ∈ S \ I ∞

λ . Therefore a · b = c ∈ I and
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hence I · I ⊆ I.

Proposition 5.5. Let S be a topological semigroup which contains a dense
discrete subsemigroup I ∞

λ . Then for every c ∈ I ∞
λ the set

Dc(I
∞
λ ) = {(x, y) ∈ I ∞

λ × I ∞
λ | x · y = c}

is a closed-and-open subset of S × S.

Proof. Since I ∞
λ is a discrete subspace of S, we have that Dc(I ∞

λ ) is an
open subset of S × S.

Suppose that there exists c ∈ I ∞
λ such that Dc(I ∞

λ ) is a non-closed
subset of S × S. Then there exists an accumulation point (a, b) ∈ S × S of
the set Dc(I ∞

λ ). The continuity of the semigroup operation in S implies
that a · b = c. But I ∞

λ × I ∞
λ is a discrete subspace of S × S and hence by

Theorem 5.4 the points a and b belong to the ideal I = S \ I ∞
λ and hence

a · b ∈ S \ I ∞
λ cannot be equal to c.

A topological space X is defined to be pseudocompact if each locally finite
open cover of X is finite. According to [7, Theorem 3.10.22] a Tychonoff
topological space X is pseudocompact if and only if each continuous real-
valued function on X is bounded.

Theorem 5.6. If a topological semigroup S contains I ∞
λ as a dense dis-

crete subsemigroup then the square S × S is not pseudocompact.

Proof. Since the square S × S contains an infinite closed-and-open discrete
subspace Dc(I ∞

λ ), we conclude that S × S fails to be pseudocompact (see
[7, Ex. 3.10.F(d)] or [6]).

A topological space X is called countably compact if any countable open
cover of X contains a finite subcover [7]. We observe that every Hausdorff
countably compact space is pseudocompact.

Since the closure of an arbitrary subspace of a countably compact space
is countably compact (see [7, Theorem 3.10.4]) Theorem 5.6 implies the
following corollary:

Corollary 5.7. For every infinite cardinal λ the discrete semigroup I ∞
λ

does not embed into a topological semigroup S with the countably compact
square S × S.

Since every compact topological space is countably compact Theorem
3.24 [7] and Corollary 5.7 imply

Corollary 5.8. For every infinite cardinal λ the discrete semigroup I ∞
λ

does not embed into a compact topological semigroup.

We recall that the Stone-Čech compactification of a Tychonoff space X
is a compact Hausdorff space βX containing X as a dense subspace so that
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each continuous map f : X → Y to a compact Hausdorff space Y extends to
a continuous map f : βX → Y [7].

Theorem 5.9. For every infinite cardinal λ the discrete semigroup I ∞
λ

does not embed into a Tychonoff topological semigroup S with the pseudo-
compact square S × S.

Proof. By Theorem 1.3 [1] for any topological semigroup S with the pseu-
docompact square S×S the semigroup operation µ : S×S → S extends to a
continuous semigroup operation βµ : βS×βS → βS, so S is a subsemigroup
of the compact topological semigroup βS. Then Corollary 5.8 implies the
statement of the theorem.

The following example shows, that there exists a non-discrete topology
τF on the semigroup I ∞

λ such that (I ∞
λ , τF ) is a Tychonoff topological

inverse semigroup.

Example 5.10. We define a topology τF on the semigroup I ∞
λ as follows.

For every α ∈ I ∞
λ we define a family

BF (α) = {Uα(F ) | F is a finite subset of domα},

where

Uα(F ) = {β ∈ I ∞
λ | domα = domβ, ranα = ran β

and (x)β = (x)α for all x ∈ F}.

Since conditions (BP1)–(BP3) [7] hold for the family {BF (α)}α∈I ∞

λ
we con-

clude that the family {BF (α)}α∈I ∞

λ
is the base of the topology τF on the

semigroup I ∞
λ .

Proposition 5.11. (I ∞
λ , τF ) is a Tychonoff topological inverse semi-

group.

Proof. Let α and β be arbitrary elements of the semigroup I ∞
λ . We put

γ = α · β and let F = {n1, . . . , ni} be a finite subset of dom γ. We denote
m1 = (n1)α, . . . ,mi = (ni)α and k1 = (n1)γ, . . . , ki = (ni)γ. Then we get
that (m1)β = k1, . . . , (mi)β = ki. Hence we have that

Uα({n1, . . . , ni}) · Uβ({m1, . . . ,mi}) ⊆ Uγ({n1, . . . , ni})

and (
Uγ({n1, . . . , ni})

)−1
⊆ Uγ−1({k1, . . . , ki}).

Therefore the semigroup operation and the inversion are continuous in
(I �ր

∞ (N), τF ).
We observe that the group of units H(I) of the semigroup I ∞

λ with the
induced topology τF (H(I)) from (I ∞

λ , τF ) is a topological group (see [10,
pp. 313–314, Example] or [18]) and the definition of the topology τF implies
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that every H -class of the semigroup I ∞
λ is an open-and-closed subset of

the topological space (I ∞
λ , τF ). Therefore Theorem 2.20 [5] implies that the

topological space (I ∞
λ , τF ) is homeomorphic to a countable topological sum

of topological copies of
(
H(I), τF (H(I))

)
. Since every T0-topological group

is a Tychonoff topological space (see [22, Theorem 3.10] or [8, Theorem 8.4])
we conclude that the topological space (I ∞

λ , τF ) is Tychonoff too. This
completes the proof of the proposition.

Remark 5.12. We observe that the topology τF on I ∞
λ induces the dis-

crete topology on the band E(I ∞
λ ).

Example 5.13. We define a topology τWF on the semigroup I ∞
λ as follows.

For every α ∈ I ∞
λ we define a family

BWF (α) = {Uα(F ) | F is a finite subset of domα},

where

Uα(F ) = {β ∈ I ∞
λ | domβ ⊆ domα and (x)β = (x)α for all x ∈ F}.

Since conditions (BP1)–(BP3) [7] hold for the family {BWF (α)}α∈I ∞

λ
we

conclude that the family {BWF (α)}α∈I ∞

λ
is the base of the topology τWF

on the semigroup I ∞
λ .

Proposition 5.14. (I ∞
λ , τWF ) is a Hausdorff topological inverse semi-

group.

Proof. Let α and β be arbitrary elements of the semigroup I ∞
λ . We put

γ = α · β and let F = {n1, . . . , ni} be a finite subset of dom γ. We denote
m1 = (n1)α, . . . ,mi = (ni)α and k1 = (n1)γ, . . ., ki = (ni)γ. Then we get
that (m1)β = k1, . . . , (mi)β = ki. Hence we have that

Uα({n1, . . . , ni}) · Uβ({m1, . . . ,mi}) ⊆ Uγ({n1, . . . , ni})

and (
Uγ({n1, . . . , ni})

)−1
⊆ Uγ−1({k1, . . . , ki}).

Therefore the semigroup operation and the inversion are continuous in
(I ∞

λ , τWF ).
Later we shall show that the topology τWF is Hausdorff. Let α and β

be arbitrary distinct points of the space (I ∞
λ , τWF ). Then only one of the

following conditions holds:

(i) domα = domβ;
(ii) domα 6= domβ.

In case domα = domβ we have that there exists x ∈ domα such that
(x)α 6= (x)β. The definition of the topology τWF implies that Uα({x}) ∩
Uβ({x}) = ∅.
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If domα 6= domβ, then only one of the following conditions holds:

(a) domα $ domβ;
(b) domβ $ domα;
(c) domα \ domβ 6= ∅ and domβ \ domα 6= ∅.

Suppose that case (a) holds. Let x ∈ domβ \domα and y ∈ domα. The
definition of the topology τWF implies that Uα({y}) ∩ Uβ({x}) = ∅.

Case (b) is similar to (a).
Suppose that case (c) holds. Let x∈domβ\domα and y∈domα\domβ.

The definition of the topology τWF implies that Uα({y}) ∩ Uβ({x}) = ∅.
This completes the proof of the proposition.

Remark 5.15. We observe that the topology τWF on I ∞
λ induces a non-

discrete topology (and hence a non-hereditary Baire topology) on the band
E(I ∞

λ ). Moreover, H -classes in (I ∞
λ , τWF ) and (I ∞

λ , τF ) are homeomor-
phic subspaces.
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