Demonstratio mathematica | |
Global solution of reaction diffusion system with non diagonal matrix | |
article | |
Abdelkader Moumeni1  Lylia Salah Derradji1  | |
[1] Laboratoire de Mathématiques, Université Badji Mokhtar | |
关键词: reaction diffusion systems; global existence; Lyapunov functional; | |
DOI : 10.1515/dema-2013-0366 | |
学科分类:外科医学 | |
来源: De Gruyter | |
【 摘 要 】
The purpose of this paper is to prove the global existence in time of solutions for the coupled reaction-diffusion system: {∂u∂t−aΔu−bΔv=f (u, v)in ]0, +∞[×Ω∂u∂t−cΔv=g(u,v)in ]0, +∞[×Ω**487**$$\left\{ {\matrix{{{{\partial u} \over {\partial t}} - a\Delta u - b\Delta v = f\,(u,\,v)} \hfill & {{\rm in}\,]0,\, + \infty [ \times \Omega } \hfill \cr {{{\partial u} \over {\partial t}} - c\Delta v = g(u,v)} \hfill & {{\rm in}\,]0,\, + \infty [ \times \Omega } \hfill } } \right.$$ with triangular matrix of diffusion coefficients. By combining the Lyapunov functional method with the regularizing effect, we show that global solutions exist. Our investigation applied for a wide class of the nonlinear terms f and g .
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202107200001275ZK.pdf | 148KB | download |