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GLOBAL SOLUTION OF REACTION DIFFUSION SYSTEM

WITH NON DIAGONAL MATRIX

Abstract. The purpose of this paper is to prove the global existence in time of
solutions for the coupled reaction-diffusion system:











∂u

∂t
− a∆u− b∆v = f (u, v) in ]0,+∞[×Ω

∂v

∂t
− c∆v = g (u, v) in ]0,+∞[× Ω

with triangular matrix of diffusion coefficients.

By combining the Lyapunov functional method with the regularizing effect, we show
that global solutions exist. Our investigation applied for a wide class of the nonlinear
terms f and g.

1. Introduction

In this paper we study the following semilinear parabolic system

(1.1)











∂u

∂t
− a∆u− b∆v = f (u, v) , in ]0,+∞[× Ω,

∂v

∂t
− c∆v = g (u, v) in ]0,+∞[× Ω,

where Ω is a regular and bounded domain of R
n, (n ≥ 1), u = u (t, x),

v = v (t, x), x ∈ Ω, t > 0 are real valued functions, ∆ denotes the Lapla-
cian operator, and the constants of diffusion a, b, and c are assumed to be
nonnegative.

System (1.1) is subjected to the following boundary conditions

(1.2)
∂u

∂η
=

∂v

∂η
= 0, in ]0,+∞[× ∂Ω,
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and the initial data

(1.3) u (0, .) = u0, v (0, .) = v0 in Ω

which are assumed to be continuous and nonnegative.

The above system (1.1)–(1.3) arises in physics, chemistry and various
biological processes including population dynamics. ( See [5], [17] and refer-
ences therein).

Concerning the functions f and g, we assume the following hypothesis:

(H1) f (r, s) and g (r, s) are continuously differentiable on R
+ × R

+, such
that

(1.4) f (0, s) ≥ 0, and g (r, 0) ≥ 0 ∀r, s ≥ 0.

(H2) Assume further that

(1.5) sup (|f (r, s)| , |g (r, s)|) ≤ C (r + s+ 1)m , ∀r, s ≥ 0

where C is a positive constant and m ≥ 1.

Also, we suppose that, one of the following conditions is satisfied:

(C1) There exist p ≥ 2, c (p) > 0 and positive numbers (Bi (p))0≤i≤p such
that

(1.6) Bi (p) f (r, s) +Bi−1 (p) g (r, s) ≤ c (p) (r + s+ 1)

where

(1.7) [bBi+1 (p) + (a+ c)Bi (p)]
2 ≤ 4aBi+1 (p) [cBi−1 (p) + bBi (p)] .

(C2) There exist c (1) > 0 and Bi (1) , 0 ≤ i ≤ 1 such that

(1.8)







B1 (1) f (r, s) +B0 (1) g (r, s) ≤ c (1) (r + s+ 1) ,

B0 (1) , B1 (1) > 0.

The main question we want to address is the existence of global solutions
for system (1.1)–(1.3). In fact the subject of the global existence of reaction
diffusion systems has received a lot of attention in the last decades and
several outstanding results have been proved by some of the major experts
in the field. See [3, 4, 13].

For b = 0, this question has been investigated by many authors by con-
sidering special forms of the nonlinear terms f and g. Note that, Alikakos
[1], treated the following system

(1.9)











∂u

∂t
− a∆u = f (u, v) , in ]0,+∞[× Ω,

∂v

∂t
− c∆v = g (u, v) , in ]0,+∞[× Ω,
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with the same boundary conditions (1.2) and initial condition (1.3), where
f (u, v) = −g (u, v) = −uvσ, and gave a positive answer to the problem of
the global existence of system (1.9), (1.2), (1.3) under the assumption

(1.10) 1 < σ < σ0

where

(1.11) σ0 = 1 +
2

n
.

The method used in [1] is based on some Sobolev embedding theorems.
Note that the exponent σ0 given in (1.11) is exactly the critical exponents

given by Fujita [6] for the parabolic problem

(1.12)

{

ut = ∆u+ uσ,

u(x, 0) = u0(x),

where u0 in (1.12) is a nonnegative. Fujita proved that if 1 < σ < σ0, then
(1.12) possesses no global nonnegative solutions while if σ > σ0, both global
and nonglobal nonnegative solutions exist, depending on the nature of the
initial energy.

In [15] Masuda obtained a global existence result for a large class of the
parameter σ. In fact, by using some Lp estimates, he showed that the solution
of problem (1.1)–(1.3) exists globally in time if σ > 1.

The same result in [15] was obtained by Hollis et al [10] by exploiting the
duality arguments on Lp techniques, allowing to derive the uniform bound-
eness of the solution.

Following Masuda’s approach, Haraux and Youkana [8] established a
global existence result of system (1.1)–(1.3) for a large class of the func-
tion f and g. More precisely they showed that for

(1.13) f (u, v) = −g (u, v) = −uϕ (v)

the problem (1.1)–(1.3) admits a global solution provided that the following
condition holds:

lim
v→+∞

[Log (1 + ϕ (v))]

v
= 0.

In the general case, that is to say for

(1.14) f (u, v) = −g (u, v)

the positivity of the function g (u, v) together with the maximum principle
of the heat operator give the following uniform estimate of the solution in
L∞ (Ω)

‖u (t)‖∞ ≤ ‖u0 (t)‖∞ , ∀t ∈ [0, Tmax[

where Tmax is the maximal time of existence. See Pazy [18] for more details.
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Based on the Lyapunov functional method and for f and g satisfying
(1.14), Kouachi [12] proved that the solution of problem (1.1)–(1.3) exists
globally in time if

lim
v→+∞

[Log (1 + f (u, v))]

v
<

8αβ

n (α− β)2 ‖u0‖∞
.

Recently, Moumeni and Salah Derradji [16] have established the existence
of global solution using an approach that involves the Lyapunov’s functional
for the system (1.1)–(1.3) where the functions f and g are assumed to satisfy
the condition (1.5) and b = 0.

If a 6= c, an important particular case is that when f ≤ 0, which means
that the first substance is absorbed by the reaction, in this case, the prob-
lem of the global existence of system (1.9) reduces to obtaining a uniform
estimate for v, since by the maximal principle we have

u(x, t) ≤ ‖u0‖∞.

Here the global existence when a > c has been treated by Kanel and Ki-
rane [11] for a bounded domain Ω and by Martin and Pierre [14] for whole
space R

n.

Still in the case a 6= c, but without assuming a > c, the answer is again
positive to the problem of the global existence of system (1.9) under condition
(1.15) and a polynomial growth assumption on g :

g (u, v) ≤ C (u+ v + 1)γ , for all u, v ≥ 0 and some γ ≥ 1,

see [10] for more details.

If the diffusion coefficients are the same, that is, if a = c, then system
(1.9) has a global solution under the condition

(1.15) f(u, v) + g(u, v) ≤ 0,

which is known as the mass dissipative structure condition. Indeed if a = c,
then the solution (u, v) of (1.9) satisfies (by summing up the two equations
in (1.9))

(u+ v)t − a∆(u+ v) = f + g ≤ 0.

Then the maximal principle implies

0 ≤ u+ v ≤ ‖u0‖∞ + ‖v0‖∞.

Therefore, the global existence follows.

In the present work we consider problem (1.1)–(1.3) with b > 0, and
by adopting the Lyapunov method combined with some Lp estimates we
establish a global existence result of the solution when b > 0.
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The plan of the paper is as follows. In section 2, we fix notations and
for the convenience of the reader, we recall without proof the local existence
result. In section 3, we state and prove our main result.

2. Notation and some preliminary observations

Throughout the text we shall denote by ‖.‖p the Lp(Ω) norm for 1 ≤
p ≤ ∞, i.e. ‖u‖pp = 1

|Ω|

	
Ω |u (x)|p dx and ‖u‖∞ = ess supx∈Ω |u (x)| , also

we denote by ‖u‖C(Ω) = maxx∈Ω |u (x)| , the usual norms in C(Ω).

First, since the functions f and g are continuously differentiable on R
+×

R
+ then, for any initial data in C

(

Ω
)

it is easy to check the Lipschitz
continuity on bounded subsets of the domain associated to the operator

A :=

(

a∆ b∆

0 c∆

)

.

Then, from the basic existence theory (see Pazy [18]) the problem admits
unique classical solution (u, v) defined on [0, Tmax[×Ω. More precisely, under
the above assumptions, we have the following theorem.

Theorem 2.1. System (1.1)–(1.3) admits a unique classical solution (u, v)
defined on (0, Tmax]× Ω. Moreover, if Tmax < ∞, then

lim
t→Tmax

{‖u(t, .)‖∞ + ‖v(t, .)‖∞} = ∞.

In this case, Tmax(‖u0‖∞, ‖v0‖∞) is called the blowing up time.

Remark 2.1. Under condition (H1), it follows from the invariant region
method that system (1.1)–(1.3) preserves positivity. In other words, if the
initial data u0 and v0 in (1.3) are nonnegative, then the functions u and v of
the corresponding solution of (1.1)–(1.3) are also nonnegative on ]0, Tmax[×Ω.
See [9].

3. Main results

In this section, we state and prove our global existence result of system
(1.1)–(1.3). Our main theorem reads as follows.

Theorem 3.1. Let p > mn
2 . Assume that condition (1.5) holds and one of

the conditions (1.6) or (1.8) are satisfied. Then the solution (u (t, .) , v (t, .))
of (1.1)–(1.3) exists globally in time.

We note that to prove Theorem 3.1 it is sufficient to derive a uniform
estimate of

sup(‖f (u, v)‖q , ‖g (u, v)‖q)

for some q > n/2. (See [9] for more details).
The following lemma is a useful tool in the proof of the Theorem 3.1.
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Lemma 3.1. Let (u (t, .) , v (t, .)) be the solution of (1.1)–(1.3). If one of

the conditions (1.6) or (1.8) are satisfied, then there exists an integer p ≥ 1
and a continuous function Cp : R

+ −→ R
+ such that

sup(‖u (t, .)‖p , ‖v (t, .)‖p) ≤ Cp (t) , t < Tmax.

Proof. Let us consider the function Lp defined by

(3.1) Lp (t) =
�

Ω

(

p
∑

i=0

Ci
pBi (p)u

ivp−i
)

dx =
�

Ω

(

p
∑

i=0

αi (p)u
ivp−i

)

dx

where

(3.2) αi (p) = Ci
pBi (p) , i = 0, . . . , p

and

Ci
p =

p!

i!(p− i)!
.

Differentiating Lp with respect to t yields

L′
p (t) =

�

Ω

[

(

p
∑

i=1

iαi (p)u
i−1vp−i

)∂u

∂t
+
(

p−1
∑

i=0

(p− i)αi (p) u
ivp−i−1

)∂v

∂t

]

dx

=
�

Ω

[

(

p
∑

i=1

iαi (p)u
i−1vp−i

)∂u

∂t
+
(

p
∑

i=1

(p− i+ 1)αi−1(p)u
i−1vp−i

)∂v

∂t

]

dx.

A simple computation leads

L′
p (t) =

�

Ω

(

p
∑

i=1

iαi (p) u
i−1vp−i

)

(f (u, v) + a∆u+ b∆v) dx

+
�

Ω

(

p
∑

i=1

(p− i+ 1)αi−1 (p)u
i−1vp−i

)

(g (u, v) + c∆v)dx.

From the above equality, it follows that

(3.3) L′
p (t)

=
�

Ω

(

p
∑

i=1

{iαi (p) f (u, v) + (p− i+ 1)αi−1 (p) g (u, v)}u
i−1vp−i

)

dx

+
�

Ω

(

p
∑

i=1

{aiαi(p)∆u+ [biαi(p) + c(p− i+ 1)αi−1(p)]∆v}ui−1vp−i
)

dx.

We distinguish two cases:
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Case 1: when p = 1, we obtain from (3.3)

L′
1 (t) =

�

Ω

[aα1 (1)∆u+ (bα1 (1) + cα0 (1))∆v] dx

+
�

Ω

(α1 (1) f (u, v) + α0 (1) g (u, v)) dx.

By a simple use of Green’s formula, we obtain

L′
1 (t) =

�

Ω

(α1 (1) f (u, v) + α0 (1) g (u, v)) dx

=
�

Ω

(B1 (1) f (u, v) +B0 (1) g (u, v)) dx.

Using condition (1.8) we deduce,

L′
1 (t) ≤ c (1)

�

Ω

(u+ v + 1) dx = c (1)
�

Ω

(u+ v) dx+ c (1)mes(Ω).

Then the functional L1 satisfies the following differential inequality

L′
1 (t) ≤ c1 (1)L1 (t) + c2 (1) , ∀t < Tmax

where

c1 (1) =
c (1)

min (α1 (1) , α0 (1))
, c2 (1) = c (1)mes(Ω).

A simple integration of the above inequality gives

L1 (t) ≤

[

L1 (0) +
c2 (1)

c1 (1)

]

exp (c1 (1) t)−
c2 (1)

c1 (1)
, ∀t < Tmax.

It’s not hard to see that from (3.1) we obtain

L1 (t) ≥ min (α1 (1) , α0 (1))
�

Ω

(u+ v) dx

≥ min (α1 (1) , α0 (1)) sup (‖u (t, .)‖1 , ‖v (t, .)‖1).

Then we get

(3.4) sup ‖u (t, .)‖1 , ‖v (t, .)‖1 ≤ c1 (t) , ∀t < Tmax

where

c1 (t) =
1

min (α1 (1) , α0 (1))

{[

L1 (0) +
c2 (1)

c1 (1)

]

exp (c1 (1) t)−
c2 (1)

c1 (1)

}

.

Case 2: when p ≥ 2, we set

T =
�

Ω

(

p
∑

i=1

{aiαi (p)∆u+ [biαi(p) + c(p− i+ 1)αi−1(p)]∆v}ui−1vp−i
)

dx

=

p
∑

i=1

�

Ω

∆ {aiαi (p) u+ [biαi (p) + c (p− i+ 1)αi−1 (p)] v}u
i−1vp−idx.
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Then, Green’s formula gives

T = −

p
∑

i=1

�

Ω

[

∇{aiαi (p)u+ b (p− i+ 1)αi−1 (p) v}∇
(

ui−1vp−i
)]

dx

which implies

T = −
�

Ω

[

p
∑

i=2

a (i− 1) iαi (p) u
i−2vp−i (∇u)2

+

p−1
∑

i=1

ai (p− i)αi (p) u
i−1vp−i−1∇u∇v

+

p
∑

i=2

[bi (i− 1)αi (p) + c (p− i+ 1) (i− 1)αi−1 (p)]u
i−2vp−i∇u∇v +

p−1
∑

i=1

[bi (i− 1)αi(p) + c(p− i+ 1) (p− i)αi−1(p)]u
i−1vp−i−1 (∇v)2

]

dx

and therefore,

T = −
�

Ω

{

p−1
∑

i=1

[

ai (i+ 1)αi+1 (p) (∇u)2 + [(a+ c) i (p− i)αi (p)(3.5)

+ bi (i+ 1)αi+1 (p)]∇u∇v + [c (p− i) (p− i+ 1)αi−1 (p)

+ bi (p− i)αi (p)] (∇v)2
]

ui−1vp−i−1
}

dx.

Since

αi (p) = Ci
pBi (p) , i = 0, . . . , p

then, (3.3) becomes

L′
p (t) =

�

Ω

(

p
∑

i=1

{

iCi
pBi (p) f + (p− i+ 1)Ci−1

p Bi−1 (p) g
}

ui−1vp−i
)

dx

−
�

Ω

{

p−1
∑

i=1

{ai (i+ 1)Ci+1
p Bi+1 (p) (∇u)2

+
[

i (i+ 1) bCi+1
p Bi+1 (p) + (a+ c) i (p− i)Ci

pBi (p)
]

∇u∇v

+ [c(p− i)(p− i+ 1)Ci−1
p Bi−1(p) + bi(p− i)Ci

pBi(p)](∇v)2]ui−1vp−i−1
}

dx.

Using the fact that

iCi
p = (p− i+ 1)Ci−1

p = pCi−1
p−1,
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and also since

i (i+ 1)Ci+1
p = i (p− i)Ci

p = (p− i) (p− i+ 1)Ci−1
p = p (p− 1)Ci−1

p−2,

we conclude

L′
p (t) =

�

Ω

(

p
∑

i=1

pCi−1
p−1 [Bi (p) f +Bi−1 (p) g]u

i−1vp−i
)

dx

− p(p− 1)
�

Ω

{

p−1
∑

i=1

Ci−1
p−2

[

aBi+1(p)(∇u)2 + [bBi+1(p) + (a+ c)Bi(p)]∇u∇v

+ [cBi−1 (p) + bBi (p)] (∇v)2
]

ui−1vp−i−1
}

dx.

The quadratic forms

aBi+1 (p) (∇u)2 + [bBi+1 (p) + (a+ c)Bi (p)]∇u∇v

+ [cBi−1 (p) + bBi (p)] (∇v)2

are positive since from (1.7) we have

[bBi+1 (p) + (a+ c)Bi (p)]
2 − 4aBi+1 (p) [cBi−1 (p) + bBi (p)] ≤ 0.

Consequently,

L′
p (t) ≤ p

�

Ω

(

p
∑

i=1

Ci−1
p−1 [Bi (p) f (u, v) +Bi−1 (p) g (u, v)]u

i−1vp−i
)

dx.

Using condition (1.6), we deduce that

L′
p (t) ≤ c′ (p)

�

Ω

(

p
∑

i=1

Ci−1
p−1 (u+ v + 1)ui−1vp−i

)

dx

≤ c′ (p)
�

Ω

(

p
∑

i=1

Ci−1
p−1u

ivp−i +

p
∑

i=1

Ci−1
p−1u

i−1vp−i+1 +

p
∑

i=1

Ci−1
p−1u

i−1vp−i
)

dx

≤ c′ (p)
�

Ω

(

p
∑

i=1

Ci−1
p−1u

ivp−i +

p−1
∑

i=0

Ci
p−1u

ivp−i +

p−1
∑

i=0

Ci
p−1u

ivp−i−1
)

dx

≤ c′ (p)
�

Ω

(

p
∑

i=0

Ci
pu

ivp−i
)

dx+ c′ (p)
�

Ω

(

p−1
∑

i=0

Ci
p−1u

ivp−i−1
)

dx.

Using the fact that

p−1
∑

i=0

Ci
p−1u

ivp−i−1 = (u+ v)p−1 .
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Therefore, the last inequality can be written as

L′
p (t) ≤ c1 (p)Lp (t) + c′ (p)

�

Ω

(u+ v)p−1 dx.

Applying Hôlder’s inequality to the second term in the right hand side of
the above inequality, we obtain

L′
p (t) ≤ c1 (p)Lp (t) + c′ (p) (mes(Ω))1/p

( �

Ω

(u+ v)p dx

)(p−1)/p

.

Since the following inequality holds,

(u+ v)p =

p
∑

i=0

Ci
pu

ivp−i ≤
sup0≤i≤pC

i
p

min0≤i≤p αi (p)

p
∑

i=0

αi (p) u
ivp−i.

Then, we have

L′
p(t) ≤ c1(p)Lp(t) + c′(p)(mesΩ)1/p

(

sup0≤i≤pC
i
p

min0≤i≤p αi(p)

)(p−1)/p

(Lp(t))
(p−1)/p.

Hence, the functional Lp satisfies the following differential inequality

L′
p (t) ≤ c1 (p)Lp (t) + c2 (p) (Lp (t))

(p−1)/p , ∀t < Tmax(3.6)

c2 (p) = c′ (p) (mesΩ)1/p
(

sup≤i≤pC
i
p

min0≤i≤p αi (p)

)(p−1)/p

which gives us, by a simple integration

(Lp (t))
1/p ≤

[

(Lp (0))
1/p

+
c′2 (p)

c′1 (p)

]

exp
(

c′1 (p) t
)

−
c′2 (p)

c′1 (p)

where

c′1 (p) =
c1 (p)

p
and c′2 (p) =

c2 (p)

p
.

By using the inequality

(3.7) Lp (t) =
�

Ω

(

p
∑

i=0

αi (p)u
ivp−i

)

dx ≥
�

Ω

[αp (p) u
p + α0 (p) v

p] dx

it follows that

Lp (t) ≥ min (α0 (p) , αp (p)) sup

( �

Ω

updx,
�

Ω

vpdx

)

.

Hence,

(Lp (t))
1/p ≥ [min (α0 (p) , αp (p))]

1/p sup

(( �

Ω

updx

)1/p

,

( �

Ω

vpdx

)1/p)

.
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And therefore,

(3.8) sup
(

‖u (t, .)‖p , ‖v (t, .)‖p

)

≤
(Lp (t))

1/p

[min (α0 (p) , αp (p))]
1/p

, ∀ t < Tmax.

With (3.7) and (3.8) we obtain

(3.9) sup
(

‖u (t, .)‖p , ‖v (t, .)‖p

)

≤ cp (t) , ∀t < Tmax

where
(3.10)

cp (t) =
1

[min (α0 (p) , αp (p))]
1/p

{(

(Lp(0))
1/p +

c′2 (p)

c′1(p)

)

e(c
′

1
(p)t) −

c′2(p)

c′1(p)

}

.

The proof of Lemma 3.1 is complete.

Proof of Theorem 3.1. From (1.5) we have

sup (|f (u, v)| , |g (u, v)|) ≤ C (u+ v + 1)m .

Then, it follows that

sup

( �

Ω

| f (u, v)|p/m dx,
�

Ω

|g (u, v)|p/m dx

)

≤ Cp/m
�

Ω

(u+ v + 1)p dx

which implies

(3.11) sup
(

‖f (u, v)‖
p/m
p/m , ‖g (u, v)‖

p/m
p/m

)

≤ Cp/m
�

Ω

(u+ v + 1)p dx.

On the other hand, we have

�

Ω

(u+ v + 1)p dx =
�

Ω

[

p
∑

k=0

Ck
p (u+ v)k

]

dx

=
�

Ω

[1 + (u+ v)p] dx+

p−1
∑

k=1

Ck
p

�

Ω

(u+ v)k dx.

An application of Hôlder’s inequality leads

p−1
∑

k=1

�

Ω

(u+ v)k dx ≤

p−1
∑

k=1

Ck
p

[

( �

Ω

1p/(p−k)dx

)(p−k)/p( �

Ω

(u+ v)p dx

)k/p
]

.

Hence
�

Ω

(u+ v + 1)pdx ≤ mes (Ω) +
�

Ω

(u+ v)p dx(3.12)

+

p−1
∑

k=1

Ck
p (mes(Ω))(p−k)/p

( �

Ω

(u+ v)p dx

)k/p
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using (3.9) we get
( �

Ω

(u+ v)p dx

)1/p

= ‖u (t, .) + v (t, .)‖p ≤ ‖u (t, .)‖p + ‖v (t, .)‖p ≤ 2cp (t)

and the inequality (3.12) can be written as follows
�

Ω

(u+ v + 1)p dx ≤ mes (Ω) + 2p (cp (t))
p

+

p−1
∑

k=1

2kCk
p (mes (Ω))(p−k)/p (cp (t))

k

≤

p
∑

k=0

2kCk
p (mes (Ω))(p−k)/p (cp (t))

k .

Therefore

sup
(

‖f (u, v)‖
p/m
p/m , ‖g (u, v)‖

p/m
p/m

)

≤ Cp/m
[

p
∑

k=0

2kCk
p (mes (Ω))(p−k)/p (cp (t))

k
]

which gives that

(3.13) sup ‖f (u, v)‖p/m , ‖g (u, v)‖p/m ≤ cp,m (t) , ∀t < Tmax

where

(3.14) cp,m (t) = c
[

p
∑

k=0

2kCk
p (mes (Ω))(p−k)/p (cp (t))

k
]m/p

and
p

m
>

n

2
.

Remark 3.1. From both Lemma 3.1 and Theorem 3.1, we have obtained
an uniform estimate of sup(‖ f (u, v)‖q , ‖g (u, v)‖q) with q = p/m > n/2. By
the preliminary remarks, we conclude that the solution of the given problem
exists globally in time.
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