期刊论文详细信息
Demonstratio mathematica | |
Convergence and stability of Fibonacci-Mann iteration for a monotone non-Lipschitzian mapping | |
article | |
Sajan Aggarwal1  Izhar Uddin1  | |
[1] Department of Mathematics | |
关键词: hyperbolic metric space; nearly asymptotically nonexpansive mapping; Fibonacci-Mann iteration; monotone non-Lipschitzian mapping; fixed point theorems; | |
DOI : 10.1515/dema-2019-0030 | |
学科分类:外科医学 | |
来源: De Gruyter | |
【 摘 要 】
In this paper, we prove strong convergence and Δ−convergence of Fibonacci-Mann iteration for a monotone non-Lipschitzian mapping (i.e. nearly asymptotically nonexpansive mapping) in partially ordered hyperbolic metric space. Moreover, we prove stability of Fibonacci-Mann iteration. Further, we construct a numerical example to illustrate results. Our results simultaneously generalize the results of Alfuraidan and Khamsi [Bull. Aust. Math. Soc., 2017, 96, 307–316] and Schu [J. Math. Anal. Appl., 1991, 58, 407–413].
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202107200000916ZK.pdf | 837KB | download |