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Abstract: In this paper, we prove strong convergence and ∆−convergence of Fibonacci-Mann iteration for a
monotone non-Lipschitzianmapping (i.e. nearly asymptotically nonexpansive mapping) in partially ordered
hyperbolic metric space. Moreover, we prove stability of Fibonacci-Mann iteration. Further, we construct a
numerical example to illustrate results. Our results simultaneously generalize the results of Alfuraidan and
Khamsi [Bull. Aust. Math. Soc., 2017, 96, 307–316] and Schu [J. Math. Anal. Appl., 1991, 58, 407–413].
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1 Introduction
Metric fixed point theory is one of the important branch of nonlinear analysis. In 1922, Banach laid the foun-
dation of metric fixed point theory. He gave the first fixed point theorem which guarantee the existence and
uniqueness of fixed point and provided a constructive method to find fixed point. After the Banach fixed
point theorem several generalization came into picture. The two important extension to partially ordered
metric space was given by Ran and Reuring [1] and Nieto and Rodrique López [2]. Ran and Reuring [1] ap-
plied their results to solve matrix equation while Nieto and Rodrique López [2] applied to solve differential
equation. In 1965, Browder [3, 4], Göhde [5] and Kirk [6] independently gave the existence theorem for nonex-
pansive mapping. The existence theorem of Kirk [6] was slightly more general then the theorem of Browder
and Göhde. In 2016, Dehaish and Khamsi [7] proved Browder and Göhde fixed point theorem for monotone
nonexpansive mapping. Banach used Picard iteration process to approximate the fixed point for contraction
mapping. When we work with slightly weaker mapping, then Picard iteration does not converge. So many
iteration like Mann, Ishikawa, Krasnoseleski came into picture to sort out this problem. Schu [8] introduced
modified Mann iteration based on the good behaviour of Lipschitz constant associated to the iterates of in-
volvemappings. ThemodifiedMann iteration schemedoes not convergent formonotonemapping. Therefore,
Alfuraidan and Khamsi [9] introduced Fibonacci-Mann iteration scheme and proved strong and weak con-
vergence in partially ordered Banach space for monotone asymptotically nonexpansive mapping. It always
remains a question of attraction to prove the results of linear domain into nonlinear domain. In generalmetric
space, we don’t have addition and scalar multiplication so that we can not talk about convexity, weak con-
vergence, duals as compare to Banach space. Hence, we are unable to extend those results of Banach space
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which required convexity assumptions. Due to availability of a special kind of convex structure, hyperbolic
spaces provide a natural platform to study the approximation of fixed point.

In this paper, we prove strong convergence and ∆−convergence results of Fibonacci-Mann iteration
scheme for monotone nearly asymptotically nonexpansive mapping in partially ordered hyperbolic met-
ric space. Also, we establish the w2−stability of Fibonacci-Mann iteration process. Further, to demonstrate
the genuineness of result we construct a new example of monotone nearly asymptotically nonexpansive
mapping in hyperbolic metric space.

2 Preliminaries
A metric space (X, d) along with partial ordering⪯ is denoted by (X, d,⪯). Two points x and y in X are com-
parable whenever x ⪯ y or y ⪯ x.

Definition 1. Let (X, d,⪯) be a partial ordermetric space. Themap T : X → X is said to bemonotone or order
preserving if

x ⪯ y ⇒ T(x) ⪯ T(y),

for any x, y ∈ X.

Definition 2. [10] A mapping T : (X, d,⪯) → (X, d,⪯) is said to be monotone nearly Lipschitzian with
respect to an if for each n ∈ N, there exist a constant kn ≥ 0 such that

d(Tnx, Tny) ≤ kn(d(x, y) + an),

where an ∈ [0,∞) with an → 0 and for every comparable element x, y ∈ X. The infimum of constants kn
for which the last inequality hold is denoted by η(Tn) and called the nearly Lipschitz constant. The mono-
tone nearly Lipschitz mapping T with sequence {(an , η(Tn))} is said to be monotone nearly asymptotically
nonexpansive if

1. η(Tn) ≥ 1 for all n ∈ N and
2. lim

n→∞
η(Tn) = 1.

A point x ∈ X is said to be fixed point of T whenever T(x) = x and the set of fixed point of T is denoted by
F(T).

In 2005, Kohlenbach [11] introduced the following definition of hyperbolic metric space.

Definition 3. Let (X, d) be a metric space, then (X, d,W) will be the hyperbolic metric space if the function
W : X × X × [0, 1] → X satisfying
(i) d(z,W(x, y, α)) ≤ (1 − α)d(z, x) + αd(z, y),
(ii) d(W(x, y, α),W(x, y, β)) = |α − β|d(x, y),
(iii)W(x, y, α) = W(x, y, 1 − α),
(iv) d(W(x, y, α),W(z, w, α)) ≤ (1 − α)d(x, z) + αd(y, w)
for all x, y, z, w ∈ X and α, β ∈ [0, 1].

Note 1. If only condition (i) is satisfied, then (X, d,W) will be convex metric space introduced by Takahashi
[12]. We say that a subset C of X is said to be convex if x, y ∈ C implies thatW(x, y, α) ∈ C.

Linear example of hyperbolic metric space is Banach space and nonlinear examples are Hadamard man-
ifolds, the Hilbert open unit ball equipped with the hyperbolic metric and the CAT(0) spaces.

Nowwe construct a example of nearly asymptotically nonexpansive mapping in hyperbolic metric space
which is not in a real line.



390 | Sajan Aggarwal and Izhar Uddin

Example 1. [13] Let X = {(x1, x2) ∈ R2 : x1, x2 > 0}. Define d : X × X → [0,∞) by

d(x, y) = |x1 − y1| + |x1x2 − y1y2|

for all x = (x1, x2) and y = (y1, y2) in X. Now for α ∈ [0, 1], define a functionW : X × X × [0, 1] → X by

W(x, y, α) =
(︁
αx1 + (1 − α)y1,

αx1x2 + (1 − α)y1y2
αx1 + (1 − α)y1

)︁
.

Then we can easily verify that (X, d,W) is a hyperbolic metric space.
Now, suppose that C = [1, 4] × [1, 4] and T : C → C be a mapping defined by

T(x1, x2) =
{︃

(2, 2) if x ∈ [1, 2) × [1, 2)
(4, 4) if x ∈ [2, 4] × [2, 4]

is a discontinuous type nearly asymptotically nonexpansive mapping with a1 = 14 and an = 0 for n ≥ 2
n ∈ N. kn = 1 for all n ∈ N.

The generalization of definition of uniformly convex in metric space was first given by Goebel et al. [14].

Definition 4. Let (X, d,W) be a hyperbolic metric space. We say that X is uniformly convex if for any a ∈ X,
for every r > 0, and for each ε > 0

δ(r, ε) = inf
{︂
1 − 1

r d
(︂
1
2 x ⊕

1
2 y, a

)︂
; d(x, a) ≤ r, d(y, a) ≤ r, d(x, y) ≥ rε

}︂
> 0.

In 1976, Lim [15] introduced the concept of ∆−convergence in metric space.

Definition 5. Let X be a complete hyperbolic metric space and {xn} be a bounded sequence in X. Then the
type function r(., {xn}) : X → [0,∞) is defined by

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius r({xn}) is given by

r({xn}) = inf{r(x, {xn}) : for x ∈ X}

and the asymptotic center A({xn}) of {xn} is defined as

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.

Definition 6. A bounded sequence {xn} in X is said to ∆−converge to x ∈ X if x is the unique asymptotic
center of every subsequence {un} of {xn}. We write xn ⇁ x ({xn} ∆−converges to x).

Lemma 1. [16] Let C be a nonempty, closed and convex subset of complete uniformly convex hyperbolic metric
space X. Then every bounded sequence {xn} ∈ X has a unique asymptotic center with respect to C.

Lemma 2. [17] Let X be a uniformly convex hyperbolic space. Let R ∈ [0,∞) be such that lim sup
n→∞

d(xn , a) ≤ R,

lim sup
n→∞

d(yn , a) ≤ R and lim
n→∞

d(W(xn , yn , αn), a) = R where αn ∈ [a, b], with 0 < a ≤ b < 1. Then we have,

lim
n→∞

d(xn , yn) = 0.

Definition 7. Let C be a nonempty convex subset of a hyperbolicmetric space X. Let T : C → C be amapping.
Fix x0 ∈ C and {tn} ∈ [0, 1]. The Fibonacci-Mann iteration is the sequence {xn} defined by

xn+1 = W(T f (n)xn , xn , tn), (2.1)

for any n ∈ N, where f (n) is a Fibonacci sequence defined by f (0) = f (1) = 1 and f (n + 1) = f (n) + f (n − 1) for
n ≥ 1.
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Lemma 3. [18] Let δn, βn and 𝛾n be three sequences of nonnegative numbers such that

βn ≥ 1 and δn+1 ≤ βnδn + 𝛾n for all n ∈ N.

If
∑︀∞

n=1(βn − 1) < ∞ and
∑︀∞

n=1 𝛾n < ∞, then lim
n→∞

δn exists.

Lemma 4. [9] Let C be a convex and bounded nonempty subset of partially ordered hyperbolic metric space X.
Assume that themap T : C → C ismonotone. Let x1 ∈ C be such that x1 ⪯ T(x1) ( or T(x1) ⪯ x1) and tn ∈ [0, 1]
and consider the sequence {xn} generated by (2.1). Let p be fixed point of T such that x1 ⪯ p ( or p ⪯ x1). Then
(i) Tn(x1) ⪯ Tn+1(x1) ( or Tn+1(x1) ⪯ Tn(x1)),
(ii) x1 ⪯ xn ⪯ p ( or p ⪯ xn ⪯ x1),
(iii) T f (n)(x1) ⪯ T f (n)(xn) ⪯ p ( or p ⪯ T f (n)(xn) ⪯ T f (n)(x1)),
(iv) xn ⪯ xn+1 ⪯ T f (n)(xn) ( or T f (n)(xn) ⪯ xn+1 ⪯ xn),
for any n ∈ N.
(v) [19] xn ⪯ p (or p ⪯ xn), provided that {xn} ∆−converges to a point p ∈ C.

3 ∆-convergence and strong convergence theorem
In this section, we prove strong and ∆−convegence of Fibonacci-Mann iteration for nearly asymptotically
nonexpansive mapping in the setting of uniformly convex hyperbolic metric space.

Theorem 1. Let X be a complete uniformly convex partially ordered hyperbolic metric space and C be a
nonempty, convex and closed subset of X and let T : C → C be a monotone nearly asymptotically nonexpansive
mapping with sequence {(an , η(Tn))} and F(T) ≠ ϕ such that

∑︀∞
n=1 an < ∞ and

∑︀∞
n=1(η(T

n) − 1) < ∞. If
sequence {xn} is defined by (2.1) with x1 ⪯ Tx1 (or Tx1 ⪯ x1) where 0 < a ≤ αn , βn ≤ b < 1 and x1 ∈ C. If
p ⪯ x1 (or x1 ⪯ p) for some p ∈ F(T), then {xn} ∆− converges to a fixed point x* of T.

Proof. Let p ∈ F(T). It follows form Lemma 4 that T f (n)(xn) ⪯ p.
Now,

d(xn+1, p) = d
(︁
W(T f (n)xn , xn , tn), p

)︁
≤ (1 − tn)d(T f (n)xn , p) + tnd(xn , p)

≤ (1 − tn)[η(T f (n))d(xn , p) + η(T f (n))af (n)] + tnd(xn , p)

= (η(T f (n)) − tnη(T f (n)) + tn)d(xn , p) + (1 − tn)η(T f (n))af (n)

for n ∈ N. Also,

∞∑︁
n=1

(η(T f (n)) − tnη(T f (n)) + tn − 1) =
∞∑︁
n=1

(1 − tn)(η(T f (n)) − 1) ≤ sup
1≤n<∞

(1 − tn)
∞∑︁
n=1

(η(T f (n)) − 1) < ∞

and
∞∑︁
n=1

(1 − tn)η(T f (n))af (n) ≤ sup
1≤n<∞

(1 − tn)η(T f (n))
∞∑︁
n=1

af (n) < ∞.

It follows from Lemma 3 that lim
n→∞

d(xn , p) exists.
Let lim

n→∞
d(xn , p) = R. Then

lim sup
n→∞

d(T f (n)xn , p) ≤ lim sup
n→∞

[η(T f (n))d(xn , p) + η(T f (n))af (n)] = lim sup
n→∞

d(xn , p) = R

and
lim
n→∞

d(xn+1, p) = lim
n→∞

d
(︁
(1 − tn)T f (n)(xn)⊕ tnxn , p

)︁
= R.
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By using Lemma 2 lim
n→∞

d(T f (n)(xn), xn) = 0. From Lemma 1, {xn} have unique asymptotic center. Let A(xn) =
x* and {un} is a subsequence of {xn} such that A(un) = u. Now claim x* = u.

On contrary suppose that x* ≠ u.
Then,

lim sup
n→∞

d(un , u) < lim sup
n→∞

d(un , x*) ≤ lim sup
n→∞

d(xn , x*) < lim sup
n→∞

d(xn , u) = lim sup
n→∞

d(un , u)

which is a contradiction and hence ∆ − lim
n→∞

xn = x*.
Now, we claim that x* ∈ F(T). Form Lemma 4, xn ⪯ x*

lim sup
n→∞

d(T f (n)x*, xn) ≤ lim sup
n→∞

d(T f (n)x*, T f (n)xn) + lim sup
n→∞

d(T f (n)xn , xn)

≤ lim sup
n→∞

[η(T f (n))d(x*, xn) + η(T f (n))af (n)] + lim sup
n→∞

d(T f (n)xn , xn)

≤ lim sup
n→∞

d(x*, xn).

Since ∆ − lim
n→∞

xn = x*

lim sup
n→∞

d(x*, xn) < lim sup
n→∞

d(T f (n)x*, xn).

Thus, we have T f (n)x* = x*, which completes the proof.

Theorem 2. Let X be a complete uniformly convex partially ordered hyperbolic metric space and C be a
nonempty, convex and closed subset of X and let T : C → C be a monotone nearly asymptotically nonexpansive
mapping with sequence {(an , η(Tn))} and F(T) ≠ ϕ such that

∑︀∞
n=1 an < ∞ and

∑︀∞
n=1(η(T

n) − 1) < ∞. If
sequence {xn} is defined by (2.1) with x1 ⪯ Tx1 (or Tx1 ⪯ x1) where x1 ∈ C. If p ⪯ x1 (or x1 ⪯ p) for some
p ∈ F(T), then {xn} converges strongly to a fixed point x* of T if and only if lim inf

n→∞
d(xn , F(T)) = 0.

Proof. It is easy to see that if {xn} converges to a point x* ∈ F(T) then lim inf
n→∞

d(xn , F(T)) = 0.
For converse part, suppose that lim inf

n→∞
d(xn , F(T)) = 0. From the proof of Theorem 1, lim

n→∞
d(xn , x*) exist.

But as it is given in the hypothesis that lim inf
n→∞

d(xn , F(T)) = 0, therefore lim
n→∞

d(xn , F(T)) = 0.
Thus, for a given ϵ > 0 there exist a K(ϵ) ∈ N such that

d(xn , F(T)) <
ϵ
2 whenever n > K(ϵ).

Particularly, inf{d(xK , x*) : x* ∈ F(T)} < ε
2 . So there exist x* ∈ F(T) such that d(xK , x*) < ε

2 . Now, for
n,m > K(ϵ)

d(xn , xm) ≤ d(xn , x*) + d(x*, xm) < ϵ.

Hence xn is a Cauchy sequence in C. Since C is closed subset of X then lim
n→∞

xn = x* ∈ C.

Theorem 3. Let X be a complete uniformly convex partially ordered hyperbolic metric space and C be a
nonempty, convex and compact subset of X and let T : C → C be a monotone nearly asymptotically nonexpan-
sive mapping with sequence {(an , η(Tn))} and F(T) ≠ ϕ such that

∑︀∞
n=1 an < ∞ and

∑︀∞
n=1(η(T

n) − 1) < ∞. If
sequence {xn} is defined by (2.1) with x1 ⪯ Tx1 (or Tx1 ⪯ x1) where 0 < a ≤ αn , βn ≤ b < 1 and x1 ∈ C. If
p ⪯ x1 (or x1 ⪯ p) for some p ∈ F(T), then {xn} converges strongly to a fixed point x* of T.

Proof. From Theorem 1, we have lim
n→∞

d(T f (n)(xn), xn) = 0. Since C is compact, so there exist a subsequence
{xnk} of {xn} converges strongly to q ∈ C. Therefore lim

k→∞
d(xnk , p) = 0.

Now,

d(xnk , T f (nk)p) ≤ d(xnk , T f (nk)xnk ) + d(T f (nk)xnk , T f (nk)p)

≤ d(xnk , T f (nk)xnk ) + η(T f (nk))d(xnk , p) + η(T f (nk))af (nk).
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Taking limit as k →∞, we obtain
lim
k→∞

d(xnk , T f (nk)p) = 0.

By uniqueness of limit we obtain T f (nk)p = p. That is p ∈ F(T). Since lim
n→∞

d(xn , p) exist for every p ∈ F(T).
Hence xn converges strongly to p ∈ F(T).

4 Stability result
A fixed point iteration is numerically stable if small perturbation (due to approximation, rounding errors
etc.) during computation will produce small changes on the approximate value of the fixed point computed
by methods. In 1988, Harder and Hicks [20] gave the formal definition of stability and proved some stability
result for Picard, Mann and Kirk fixed point iteration procedures under various contractive conditions. Let us
define the stability.

Definition 8. Let (X, d) be a metric space, T be a self mapping on X and {xn} be an iterative sequence pro-
duced by the mapping T such that {︃

x1 ∈ X,
xn+1 = f (T, xn),

(1)

where x1 is an initial approximation and f is a function. Assume that {xn} converges strongly to p ∈ F(T). If
for an arbitrary sequence {yn} ⊂ X,

lim
n→∞

d(yn+1, f (T, yn)) = 0 ⇒ lim
n→∞

yn = p,

then the iterative sequence {xn} is said to be stable with respect to T or simply stable.

Definition 9. [21] Let (X, d) be a metric space and let {xn} and {yn} be two sequence in X. We say that these
sequences are equivalent if

lim
n→∞

d(xn , yn) = 0.

The following definition of w2−stability was given by Timis [22] in 2010.

Definition 10. Let (X, d) be a metric space, T be a self mapping on X and {xn} ⊂ X be an iterative sequence
given by (2.1). Suppose that {xn} converges strongly to p ∈ F(T). If for any equivalent sequence {yn} ⊂ X of
{xn},

lim
n→∞

d(yn+1, f (T, yn)) = 0 ⇒ lim
n→∞

yn = p,

then the iterative sequence {xn} is said to weak w2−stable with respect to T.

Theorem 4. Let X beauniformly convexpartially orderedhyperbolicmetric spaceand C beanonempty, convex
and closed subset of X and let T : C → C be a monotone nearly asymptotically nonexpansive mapping with
sequence {(an , η(Tn))} and F(T) ≠ ϕ such that

∑︀∞
n=1 an < ∞ and

∑︀∞
n=1(η(T

n) − 1) < ∞. If sequence {xn} is
defined by (2.1) with x1 ⪯ Tx1 (or Tx1 ⪯ x1) where 0 < a ≤ αn , βn ≤ b < 1 and x1 ∈ C. If p ⪯ x1 (or x1 ⪯ p)
for some p ∈ F(T) and {yn} be any equivalent sequence of {xn} with xn ⪯ yn ( or yn ⪯ xn), then the iteration
process (2.1) is weak w2−stable with respect to T.

Proof. Since xn ⪯ yn then by monotonicity of T, T f (n)xn ≤ T(f (n))yn. Set

εn = d(yn+1, f (T, yn)).

Suppose that εn → 0 as n →∞. Then

d(yn+1, p) ≤ d(yn+1, f (T, yn)) + d(f (T, yn), xn+1) + d(xn+1, p)
≤ εn + tn[η(Tn)d(yn , xn) + η(Tn)af (n)] + (1 − tn)d(yn , xn) + d(xn+1, p).
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By taking limit n →∞ on both side, we get

lim
n→∞

d(yn+1, p) = 0.

Thus {xn} is weak w2−stable with respect to T.

5 Example
In this section,we construct an example ofmonotonenearly asymptotically nonexpansivemapping and show
the convergence behaviour of Mann and Finbonacci-Mann iteration procedure.

Example 2. Let X = R, C = [0, 4] and T : C → C be mapping defined by

Tx =
{︃

2 if x ∈ [0, 2)
4 if x ∈ [2, 4]

is discontinuous monotone nearly asymptotically nonexpansive mapping. However, T is not asymptotically
nonexpansive mapping. The sequence {an} with a1 = 2 is eventually constant sequence which converge to
0, we have

||Tx − Ty|| ≤ ||x − y|| + a1

and
Tnx = 4 for all x ∈ [0, 4] and n > 1.

It is observed that when we take tn = (0, .5], both Mann iteration (MI) and Fibonacci-Mann iteration
(FMI) converges to fixed point and Fibonacci-Mann iteration converges faster then Mann iteration. But when
we take tn = (.5, 1), Fibonacci-Mann iteration converge for all initial value but Mann fails to converge to fixed
point for some initial value. Figure 1 and Figure 2 shows the convergence behaviour of Mann iteration and
Fibonacci-Mann iteration for tn = .5 and tn = .55 for different initial values.

Table 1: Convergence table of Mann iteration and Fibonacci-Mann iteration for tn = .5.

Iteration number MI for x1 = 0 FMI for x1 = 0 MI for x1 = 1 FMI for x1 = 1 MI for x1 = 2 FMI for x1 = 2
1 0 0 1 1 2 2
2 1 1 1.5 1.5 3 3
3 1.5 2.5 1.75 2.75 3.5 3.5
4 1.75 3.25 1.875 3.375 3.75 3.75
16 1.9999 3.9998 2 3.9998 3.9999 3.9999
17 2 3.9999 2 3.9999 4 4
18 2 4 2 4 4 4
69 3.9999 4 3.9999 4 4 4
70 3.9999 4 4 4 4 4
71 4 4 4 4 4 4
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Figure 1

Table 2: Convergence table of Mann iteration and Fibonacci-Mann iteration for tn = .55.

Iteration number MI for x1 = 0 FMI for x1 = 0 MI for x1 = 1 FMI for x1 = 1 MI for x1 = 2 FMI for x1 = 2
1 0 0 1 1 2 2
2 .9 .9 1.45 1.45 2.9 2.9
3 1.395 2.295 1.6975 2.5975 3.395 3.395
4 1.6673 3.0622 1.8336 3.2286 3.6672 3.6672
17 1.9999 3.9996 1.9999 3.9997 3.9999 3.9999
18 1.9999 3.9998 2 3.9998 3.9999 3.9999
19 2 3.9999 2 3.9999 4 4
20 2 3.9999 2 3.9999 4 4
21 2 4 2 4 4 4
100 2 4 2 4 4 4

10000 2 4 2 4 4 4

Figure 2
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