期刊论文详细信息
Advances in Nonlinear Analysis
Isoperimetric inequalities for -Hessian equations
article
Ahmed Mohammed1  Giovanni Porru2  Abdessalam Safoui3 
[1] Department of Mathematical Sciences, Ball State University;Department of Mathematics and Informatics, University of Cagliari;Department of Mathematics, University of Marrakesh
关键词: Monge–Ampère type equations;    rearrangements;    eigenvalues;    isoperimetric inequalities;   
DOI  :  10.1515/anona-2011-0006
学科分类:社会科学、人文和艺术(综合)
来源: De Gruyter
PDF
【 摘 要 】

Abstract. We consider the homogeneous Dirichlet problem for a special -Hessian equation of sub-linear type in a -convex domain , . We study the comparison between the solution of this problem and the (radial) solution of the corresponding problem in a ball having the same -quermassintegral as . Next, we consider the eigenvalue problem for the -Hessian equation and study a comparison between its principal eigenfunction and the principal eigenfunction of the corresponding problem in a ball having the same -quermassintegral as . Symmetrization techniques and comparison principles are the main tools used to get these inequalities.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202107200000832ZK.pdf 249KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:0次