
Adv. Nonlinear Anal. 1 (2012), 181–203
DOI 10.1515/anona-2011-0006 © de Gruyter 2012

Isoperimetric inequalities for k-Hessian equations

Ahmed Mohammed, Giovanni Porru and Abdessalam Safoui

Abstract. We consider the homogeneous Dirichlet problem for a special k-Hessian equa-
tion of sub-linear type in a .k � 1/-convex domain � � Rn, 1 � k � n. We study the
comparison between the solution of this problem and the (radial) solution of the corre-
sponding problem in a ball having the same .k�1/-quermassintegral as�. Next, we con-
sider the eigenvalue problem for the k-Hessian equation and study a comparison between
its principal eigenfunction and the principal eigenfunction of the corresponding problem
in a ball having the same .k � 1/-quermassintegral as �. Symmetrization techniques and
comparison principles are the main tools used to get these inequalities.
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1 Introduction

In the seminal paper [23], G. Talenti pioneered an important method for establish-
ing sharp a priori estimates of quantities involving solutions to boundary value
problems of second order elliptic linear PDE’s. In the subsequent papers [24, 25],
he obtained optimal estimates of a priori solutions to Dirichlet problems with ho-
mogeneous boundary conditions by comparing them to corresponding quantities
of solutions of problems that have better symmetry. These papers have inspired the
use of similar methods in numerous investigations involving both linear and non-
linear elliptic problems.

In the paper [28], K. Tso applies the ideas in the paper [24] to develop sym-
metrization schemes for obtaining isoperimetric inequalities of quantities involv-
ing solutions to k-Hessian equations. More specifically, let � be a bounded, open
convex set in Rn, and  be a positive, smooth real-valued function defined on �.
Consider the Dirichlet problem

Fk.D
2u/ D  .x/ in �; u D 0 on @�: (1.1)

Here 1 � k � n, Fk.A/ is the sum of the principal minors of order k of the n� n
real matrix A, and D2u is the Hessian of u 2 C 2.�/. In [28], K. Tso derives iso-
perimetric inequalities of quantities involving strictly convex solutions u to (1.1)
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in�. An appropriate rearrangement u�
k�1

of a solution u of (1.1) is compared with
the solution v to the so-called symmetrized Dirichlet problem

Fk.D
2v/ D  ].x/ in ��k�1; v D 0 on @��k�1: (1.2)

In equation (1.2),  ].x/ is the usual Schwarz decreasing rearrangement of  ,
while��

k�1
is a ball centered at the origin and with radius equal to the .k�1/-mean

radius of � (see definition in Section 2). The .k � 1/-mean radius is tailored to
the k-Hessian operator and for k D 1, the ball��0 has the same Lebesgue measure
as �, while for k D 2, the ball ��1 has the same perimeter as �. The work in [28]
provides a direct generalization of the results of G. Talenti in the paper [24] for
n D k D 2 case. We refer the reader to the papers [2, 4, 25, 27] for works that use
symmetrization methods to study sharp a priori estimates of solutions to elliptic
Dirichlet problems. The monograph [13] contains a wide description of classical
rearrangements and its application to semilinear equations. Results of existence,
uniqueness and regularity of solutions to Hessian equations can be found in [6],
[15] and [29]. For works related to Hessian equations we also mention the papers
[8,14,18,19]. The monograph [3] contains geometrical methods for the investiga-
tion of Monge–Ampère equations.

The main focus of the present work is to employ similar methods as in [23, 28]
to get isoperimetric inequalities of various quantities that involve sub-solutions
and super-solutions related to the following Dirichlet problems:

Fk.D
2u/ D f .�u/; u < 0 in �; u D 0 on @�: (1.3)

The inhomogeneous term f is a non-decreasing, non-negative smooth function
defined on Œ0;1/. A key result we find is the inequality�

du�.r/

dr

�k

� n

 
n

k

!�1

rk�n

Z r

0

tn�1f .�u�.t//dt; (1.4)

where u�.r/ is a suitable rearrangement of a super-solution to (1.3). When f .t/
satisfies a special growth condition (a typical example is f .t/ D tq , 0 < q < k),
using inequality (1.4) we find a comparison result between u�.r/ and the solution
v to problem (1.3) in the ball ��

k�1
. In case of k D n D 2, this result is proved

in [5].
We also study the case f .t/ D �tk and, again using (1.4), we provide esti-

mates of symmetrands of appropriately normalized principal eigenfunctions for
the k-Hessian operators in terms of eigenfunctions of the symmetrized eigenvalue
problem. In case of k D n D 2, these estimates are proved in [5] by using different
arguments. For properties of nonlinear eigenvalues, see also [1].
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The paper is organized as follows. In Section 2, we provide notations and basic
definitions that will be used in this work. We also recall some useful results from
the literature. In Section 3, we find various estimates related to problem (1.3) in
case f

1
k is sublinear. In Section 4, we investigate isoperimetric inequalities involv-

ing the eigenvalues and appropriately normalized eigenfunctions associated with
the k-Hessian operator.

2 Notations and preliminaries

Throughout this work, suppose that � � Rn is a bounded domain with C 2 boun-
dary. Let �1; : : : ; �n�1 be the principal curvatures of @�. For m D 1; : : : ; n � 1
we define the m-th mean curvature of @� by

Hm.@�/ D Sm.�1; : : : ; �n�1/;

where Sm denotes the elementary symmetric function of order m of �1; : : : ; �n�1.
We also define H0.@�/ D 1.

For h D 1; : : : ; n � 1 we consider domains � which are h-convex, that is,

Hj .@�/ � 0; j D 1; : : : ; h:

When @� is connected, the above condition is equivalent to Hh.@�/ � 0. We also
note that � is .n � 1/-convex when the components of � are convex in the usual
sense.

If A is an n�n matrix, we denote by Fh.A/ the sum of the principal minors of
order h of A. For h D 1; : : : ; n � 1, assume � is h-convex, and let Ah.�/ denote
the class of functions

Ah.�/ WD ¹u 2 C
2.�/ \ C 0;1.�/ W u < 0 and .hC 1/-convex in �;

u D 0 on @�º:

Recall that u is .hC 1/-convex if and only if

Fj .D
2u/ > 0; j D 1; : : : ; hC 1:

It is well known (see [30]) that if u is .hC1/-convex, then the operator FhC1.D
2u/

is elliptic. If u 2 Ah.�/, then from Sard’s theorem it follows that for almost all
t 2 .m0; 0/, m0 D minu, the sub-level set

�t D ¹x 2 � W u.x/ < tº (2.1)

will have smooth boundary †t given by the level surface

†t WD ¹x 2 � W u.x/ D tº:
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We have �0 D �. Furthermore, by (2.28) of [27], whenever jDuj > 0 on †t , we
have

Hj .†t / D Fj

�
D
Du

jDuj

�
� 0; j D 1; : : : ; h

on †t , so that �t is h-convex. When � is convex, all functions belonging to the
class An�1.�/ are convex in the usual sense. We also define A0.�/ as the class of
functions u 2 C 2.�/\C 0;1.�/ such that u < 0 in�, u D 0 on @�. In this case,
no convexity conditions on � are needed.

In what follows, k is a fixed integer such that 1 � k � n. Whenever 2 � k � n,
assume� to be .k�1/-convex. For 0 < q < k, we consider the Dirichlet problem

Fk.D
2u/ D .�u/q; u < 0 in �; u D 0 on @�: (2.2)

For existence and regularity questions related with problem (2.2) we refer the
reader to [9, 30, 31]. Let uij denote the second order derivative of u with respect
to xi and xj . Since Fk.D

2u/ is k-homogeneous with respect to uij , we have

@Fk

@uij
uij D kFk.D

2u/:

Denote by T .k�1/.D2u/ the .k � 1/-order Newton tensor of D2u. Note that

T
.k�1/
ij .D2u/ D

@Fk

@uij
:

Since T .k�1/.D2u/ is divergence free (see [20, 21]), we have

Fk.D
2u/ D

1

k

@Fk

@uij
uij D

1

k

�
T

.k�1/
ij .D2u/ui

�
j
;

and Z
�

.�u/Fk.D
2u/dx D

1

k

Z
�

T
.k�1/
ij .D2u/uiujdx:

Define

Sk;q.�/ D inf
²Z

�

.�v/Fk.D
2v/dx W v 2 Ak�1.�/;

Z
�

.�v/qC1dx D 1

³
:

(2.3)
We can rewrite (2.3) as

Sk;q.�/ D inf

8<:
R

�.�v/Fk.D
2v/dx�R

�.�v/
qC1dx

�kC1
qC1

W v 2 Ak�1.�/

9=; :
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One can show (see [30, Section 6]) that a minimizer v of (2.3) satisfies the problem

Fk.D
2v/ D Sk;q.�/.�v/

q; v 2 Ak�1.�/: (2.4)

Note that if v is a solution to problem (2.4), then

u D
�
Sk;q.�/

� 1
q�k v

is a solution to problem (2.2).
For m D 1; : : : ; n � 1, the quermassintegral Vm.�/ is defined by

Vm.�/ D
1

n

 
n � 1

m

!�1 Z
@�

Hn�m�1.@�/d�; (2.5)

where d� denotes the .n � 1/-dimensional Hausdorff measure in Rn. We find

Vn�1.�/ D
�.@�/

n
;

where �.@�/ denotes the .n � 1/-measure of @�. We also define Vn.�/ D j�j,
the usual Lebesgue measure of �. Furthermore, whenever � is connected, we put
V0.�/ D !n, the measure of the unit ball in Rn.

With � being .n � m C 1/-convex whenever m � n � 2, following [27] we
define the m-mean radius of �, denoted by �m.�/, as

�m.�/ D

�
Vm.�/

!n

� 1
m

; m D 1; : : : ; n:

Note that �n.�/ is the radius of the ball having the same n-measure as �, and
�n�1.�/ is the radius of the ball having the same perimeter as �. In case � is a
ball we have �1.�/ D � � � D �n.�/. The following isoperimetric inequalities are
well known for convex domains �:

�`.�/ � �m.�/; 1 � m � ` � n:

These inequalities are equivalent to the Alexandrov–Fenchel inequalities for the
quermassintegrals of convex domains. Recently P. Guan and J. Li have shown in
[11] that these isoperimetric inequalities hold for starshaped h-convex domains�.
The paper [26] deals with the Alexandrov–Fenchel inequalities for h-convex (with-
out additional information) but, as remarked in [11] and in [12], the proof in [26]
is incomplete.

For h D 1; : : : ; n � 2, we consider domains � such that�
Vn.�/

!n

� 1
n

�

�
Vn�h.�/

!n

� 1
n�h

�

�
Vn�h�1.�/

!n

� 1
n�h�1

: (2.6)

It is unclear if (2.6) holds for any h-convex domain (see [11]).
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For each h D 1; : : : ; n � 2, we introduce the family of functions

ˆh.�/ WD ¹u 2 Ah.�/ W .2.6/ holds for each �t , t � 0º;

where�t is as defined in (2.1). We note that, for h D 0, the left-hand side of (2.6)
holds trivially, and the right-hand side reduces to the familiar isoperimetric in-
equality; therefore, we put ˆ0.�/ D A0.�/. We also note that all functions be-
longing to An�1.�/ are convex, and that the left-hand side of (2.6) holds for con-
vex domains. We put ˆn�1.�/ D An�1.�/.

For h D 0; : : : ; n � 1, we define the rearrangement of u 2 ˆh.�/ with respect
to the quermassintegral Vn�h as

uF

h
.s/ D sup

®
t � 0 W Vn�h.�t / � s; 0 � s � Vn�h.�/

¯
:

The function uF

h
.s/ is non decreasing and satisfies

uF

h
.0/ D min

�
u.x/; uF

h

�
Vn�h.�/

�
D 0:

We also define

u�h.x/ D u
F

h

�
!njxj

n�h
�
; 0 � jxj � �n�h.�/:

The function u�
h
.x/ is called the h-symmetrand of u (see [27]) and can also be de-

fined by

u�h.x/ D sup
®
t � 0 W �n�h.�t / � jxj; 0 � jxj � �n�h.�/

¯
:

Since u�
h
.x/ is radially symmetric, we often write u�

h
.x/ D u�

h
.r/ for jxj D r . We

have
u�h.0/ D min

�
u.x/ and u�h

�
�n�h.�/

�
D 0:

Note that u�0.x/ is the usual Schwarz increasing symmetrization of u.x/.
By definition we have

�n�h.�t / D �n�h.¹u
�
h.x/ < tº/:

By using this equation and the left-hand side of (2.6), we find

�n.�t / � �n�h.¹u
�
h.x/ < tº/ D �n.¹u

�
h.x/ < tº/:

It follows that

j¹x 2 � W u.x/ < tºj � j¹x 2 ��h W u
�
h.x/ < tºj; (2.7)

where jEj denotes the usual Lebesgue measure ofE, and��
h

is the ball with radius
�n�h.�/. Note that ��0 is the ball such that j��0j D j�j, and ��1 is the ball with
the same perimeter as �.
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By (2.7) it follows that, for p � 1,

kukLp.�/ � ku
�
hkLp.��

h
/: (2.8)

Recall that k is an integer such that 1 � k � n, and that ��
k�1

is the ball cen-
tered at the origin and radius �n�kC1.�/. To simplify our statements, we say that
every smooth domain � is 0-convex.

Lemma 2.1. Let � be .k � 1/-convex and u 2 ˆk�1.�/. If m0 D inf� u, for al-
most every t 2 .m0; 0/ we have

d

dt

Z
†t

Hk�2d� D .k � 1/

Z
†t

Hk�1

jDuj
d�; k � 2; (2.9)

T
.k�1/
ij .D2u/uiuj D jDuj

kC1Hk�1 on †t : (2.10)

Furthermore, if z WD u�
k�1

, for p � k C 1 we haveZ
�

T
.k�1/
ij .D2u/uiuj jDuj

p�k�1dx

�

Z
��

k�1

T
.k�1/
ij .D2z/zizj jDzj

p�k�1dx:

(2.11)

Proof. For the proof of (2.9), (2.10) and (2.11) see (2.20), (2.28) and (4.1) of [27],
respectively.

3 Sub-linear equations

Proposition 3.1. Let Sk;q.�/ be defined as in (2.3) for a .k�1/-convex domain�,
and let Sk;q.�

�
k�1

/ be defined as in (2.3) for ��
k�1

. If Sk;q.�/ has a minimizer
u 2 ˆk�1.�/, then we have

Sk;q.�/ � Sk;q.�
�
k�1/: (3.1)

Proof. If u 2 ˆk�1.�/ is a minimizer for Sk;q.�/, we have

Sk;q.�/ D
1

k

Z
�

T
.k�1/
ij .D2u/uiujdx;

Z
�

.�u/qC1dx D 1:

With notation as in Lemma 2.1, by using (2.11) with p D k C 1 we find

Sk;q.�/ �
1

k

Z
��

k�1

T
.k�1/
ij .D2z/zizjdx:

By (2.8) with h D k � 1 and p D q C 1 we have

1 D

Z
�

.�u/qC1dx �

Z
��

k�1

.�z/qC1dx:
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Therefore, we find

Sk;q.�/ �

1
k

R
��

k�1
T

.k�1/
ij .D2z/zizjdx�R

��
k�1
.�z/qC1dx

�kC1
qC1

� Sk;q.�
�
k�1/:

The proposition is proved.

Remark 3.2. We may ask if a minimizer of Sk;q.�/ always belongs to ˆk�1.�/.
Well, certainly this is true for k D 1 since we haveˆ0.�/D A0.�/, and for k D n
(Monge–Ampère case) since � must be convex and ˆn�1.�/ D An�1.�/. For
1 < k < n and� convex we believe that a minimizer of Sk;q.�/ has convex level
sets, but we do not have a proof at this time. We have learned from Paolo Salani
that the result holds in case n D 3 and k D 2, see [17] and [22].

Lemma 3.3. Let ��Rn be a .k � 1/-convex domain. Suppose

f W .0;1/! .0;1/

is a non-decreasing smooth function, and f .s/ > 0 for s > 0. Let v 2 ˆk�1.�/

be a super-solution of

Fk.D
2v/ D f .�v/ in �:

If v�
k�1

.x/ is the .k � 1/-symmetrand of v, and if v�.r/ WD v�
k�1

.x/ for r D jxj,
then �

dv�.r/

dr

�k

� n

 
n

k

!�1

rk�n

Z r

0

tn�1f .�v�.t//dt; (3.2)

with equality if and only if v is a solution and � is a ball.

Proof. Note that v� is defined in BR D �
�
k�1

, the ball centered in the origin and
radius R WD �n�kC1.�/. We also recall that

�t D ¹x 2 � W v.x/ < tº; †t D ¹x 2 � W v.x/ D tº:

Since v is a super-solution we have

Fk.D
2v/ � f .�v/:

Integration over �t , for almost all values of t , leads to

1

k

Z
†t

T
.k�1/
ij .D2v/vivj jDvj

�1d� �

Z
�t

f .�v/dx:

On using (2.10), this inequality becomesZ
†t

jDvjkHk�1d� � k

Z
�t

f .�v/dx:



Isoperimetric inequalities for k-Hessian equations 189

An application of Hölder’s inequality then givesZ
†t

Hk�1d� �

�Z
†t

jDvjkHk�1d�

� 1
kC1

�Z
†t

jDvj�1Hk�1d�

� k
kC1

�

�
k

Z
�t

f .�v/dx

� 1
kC1

�Z
†t

jDvj�1Hk�1d�

� k
kC1

:

(3.3)

For the rest of the argument we will write Vh.t/ for Vh.�t /. Consider first the case
2 � k � n � 1. By (2.5) with m D n � k we findZ

†t

Hk�1d� D n

 
n � 1

n � k

!
Vn�k.t/ D k

 
n

k

!
Vn�k.t/: (3.4)

On the other hand, by (2.9) we getZ
†t

jDvj�1Hk�1d� D
1

k � 1

d

dt

Z
†t

Hk�2d�: (3.5)

But, by (2.5) with m D n � k C 1 we haveZ
†t

Hk�2d� D n

 
n � 1

n � k C 1

!
Vn�kC1.t/:

Therefore, we can rewrite (3.5) asZ
†t

jDvj�1Hk�1d� D

 
n

k � 1

!
d

dt
Vn�kC1.t/:

Inserting the above equation and (3.4) into (3.3) yields

k

 
n

k

!
Vn�k.t/ �

�
k

Z
�t

f .�v/dx

� 1
kC1

� 
n

k � 1

!
d

dt
Vn�kC1.t/

� k
kC1

:

After some simplification we obtain

�
Vn�k.t/

�kC1
k �

� 
n

k

!�1 Z
�t

f .�v/dx

� 1
k 1

n � k C 1

d

dt
Vn�kC1.t/:

Using the right-hand side of (2.6) with h D k � 1, we find

Vn�k.t/ � !n

�
Vn�kC1.t/

!n

� n�k
n�kC1

D !
1

n�kC1
n

�
Vn�kC1.t/

� n�k
n�kC1 :
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Therefore,

!
kC1

k.n�kC1/

n

�
Vn�kC1.t/

� n�k
n�kC1

kC1
k

�

� 
n

k

!�1 Z
�t

f .�v/dx

� 1
k 1

n � k C 1

d

dt
Vn�kC1.t/:

(3.6)

Ifm0 D min� v.x/ and �.t/ D j�t j, we have (see [10, Theorem 3.36 and Propo-
sition 6.23])Z

�t

f .�v/dx D

Z t

m0

f .��/�0.�/d� D f .�t /�.t/C

Z t

m0

f 0.��/�.�/d�:

Using the left-hand side of (2.6) with h D k � 1, we find

�.t/ � !
1�k

n�kC1
n .Vn�kC1.t//

n
n�kC1 :

Therefore,Z
�t

f .�v/dx � !
1�k

n�kC1
n

�
f .�t /.Vn�kC1.t//

n
n�kC1

C

Z t

m0

f 0.��/.Vn�kC1.�//
n

n�kC1d�

�

D
n!

1�k
n�kC1
n

n � k C 1

Z t

m0

f .��/.Vn�kC1.�//
k�1

n�kC1 .Vn�kC1.�//
0d�:

Putting � D Vn�kC1.�/, since vF.�/ is essentially the inverse of Vn�kC1.�/, we
get Z

�t

f .�v/dx �
n!

1�k
n�kC1
n

n � k C 1

Z Vn�kC1.t/

0

f .�vF.�//�
k�1

n�kC1d�: (3.7)

Inserting the latter estimate into (3.6), we find�
Vn�kC1.t/

� n�k
n�kC1

kC1
k

�

� 
n

k

!�1
n!

�2k
n�kC1
n

.n � k C 1/kC1

Z Vn�kC1.t/

0

f .�vF.�//�
k�1

n�kC1d�

� 1
k

�
d

dt
Vn�kC1.t/:

Now we put Vn�kC1.t/ D s. Since

d

dt
Vn�kC1.t/ D

�
dvF.s/

ds

��1

;
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we get�
dvF.s/

ds

�k

�

 
n

k

!�1
n!

�2k
n�kC1
n

.n � k C 1/kC1
s

.k�n/.kC1/
n�kC1

Z s

0

f .�vF.�//�
k�1

n�kC1d�:

With the change of variable s D !nr
n�kC1 we have vF.s/ D v�.r/, and

dv�.r/

dr
D
dvF.s/

ds
!n.n � k C 1/r

n�k :

With this new variable we find�
dv�.r/

dr

�k

�

 
n

k

!�1
n!

�n
n�kC1
n

n � k C 1
rk�n

Z s

0

�
k�1

n�kC1f .�vF.�//d�:

Putting � D !nt
n�kC1 and recalling that s D !nr

n�kC1, after simplification we
get the inequality stated in the lemma for 2 � k � n � 1.

If k D 1, equation (3.4) continues to hold, and inequality (3.5) can be replaced
by the classical inequality Z

†t

jDvj�1d� D
d

dt
Vn.t/:

The proof continues as in the previous case.
Finally, let k D n. Instead of .3.4/ now we use the well-known inequalityZ

†t

Hn�1d� D n!n:

Inequality .3.5/ continues to hold when k D n, therefore, by .3.3/ we find

�
!n

�nC1
n �

�Z
�t

f .�v/dx

� 1
n d

dt
V1.t/:

This inequality may be viewed as the analogous of .3.6/ in case of k D n. From
now on the proof continues as before and yields the inequality stated in the lemma
for k D n.

If� is a ball and z is a solution of the given equation, all the inequalities used in
the proof of the lemma are equalities, therefore, the inequality of the lemma holds
with equality sign. More easily, in this case the equality follows directly from the
equation which, for radial functions z D z.r/, reads as

1

n

 
n

k

!
r�nC1

�
rn�k

�
dz

dr

�k�0
D f .�z/: (3.8)
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Finally, if equality holds for all r 2 .0; �n�kC1.�//, then all the inequalities
involved in the proof must be equalities. Furthermore, by equation (3.8) we see
that z0.r/ > 0 for r > 0. Hence, � must be a ball. The lemma is proved.

To proceed further, we will need a comparison principle. By [31, Lemma 5.1], a
result of uniqueness holds for problem (2.2) (and, equivalently, for problem (2.4)).
By using a method similar to the one used in [31], we prove a comparison lemma
which we shall use later on. Consider a smooth function f W Œ0;1/! Œ0;1/ such
that f .s/ > 0 for s > 0 and

f 0.s/ � 0 and there is 0 < q < k such that

f .˛s/ � ˛qf .s/ 8.˛; s/ 2 .0; 1/ � .0;1/:
(3.9)

A typical example which satisfies (3.9) is f .s/ D sq with 0 < q < k.

Lemma 3.4. Suppose f satisfies condition (3.9), and let� � Rn be a .k�1/-con-
vex domain. Suppose w; u 2 Ak�1.�/ satisfy

Fk.D
2w/ � f .�w/; Fk.D

2u/ � f .�u/ in �: (3.10)

Then, w � u in �.

Proof. Since w 2 Ak�1.�/, there is a positive constant C.n; k/ such that

�w � C.n; k/.Fk.D
2w//

1
k � C.n; k/.f .�w//

1
k > 0:

It follows from Hopf’s lemma for subharmonic functions (rather using the barrier
constructed in its proof) that w.x/ � �c1d.x/ in �, where d.x/ denotes the dis-
tance from x to @� and c1 is a suitable positive constant. For x 2 �, let xb 2 @�

such that d.x/ D jx � xbj. Then, since u 2 C 0;1.�/, we find that

�u.x/ D ju.x/j � Lip.u;�/jx � xbj D Lip.uI�/d.x/:

It follows that u.x/� �c2d.x/ for x 2� and some positive constant c2. Conse-
quently we get

w.x/ �
c1

c2
u.x/: (3.11)

Let us now suppose, by way of contradiction, that w � u in � does not hold.
Consider the set

S WD ¹� 2 Œ0; 1� W w.x/ � �u.x/ 8x 2 �º:

Let ƒ WD supS . By using (3.11) we see that 0 < ƒ < 1, and we have w �ƒu
in �. By condition (3.9), there is 0 < q < k such that

f .�ƒu.x// � ƒqf .�u.x// 8x 2 �: (3.12)
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Since 0 < q < k, we choose " > 0, sufficiently small, thatƒq > .ƒC "/k . Using
the monotonicity of f , (3.10) and (3.12), the following chain of inequalities hold
in �:

Fk.D
2w/ � f .�w/

� f
�
�ƒu

�
� ƒqf .�u/

> .ƒC "/kf .�u/

� .ƒC "/kFk.D
2u/

D Fk

�
D2..ƒC "/u/

�
:

Thus, by the comparison principle, we have

w.x/ � .ƒC "/u.x/ 8x 2 �:

But this contradicts the choice of ƒ. The lemma is proved.

Remark 3.5. By Lemma 3.4, a result of uniqueness holds for problem (2.4). If B
is a ball then the minimizer v for Sk;q.B/ is radially symmetric. Indeed, v satisfies
(2.4) with� D B . Since the operator Fk.D

2v/ is invariant for rotations, if v were
not symmetric, then, by a suitable rotation, we would find a different solution Qv,
contradicting the uniqueness for problem (2.4).

Theorem 3.6. Let � � Rn be a .k � 1/-convex domain. Suppose f satisfies con-
dition (3.9). Let v 2 ˆk�1.�/ be a super-solution of

Fk.D
2v/ D f .�v/ in �;

and let v�
k�1

.x/ be its .k�1/-symmetrand. Let z 2 ˆk�1.BR/ be a sub-solution of
the above equation in the ball BR, where R WD �n�kC1.�/. If v�.r/ D v�

k�1
.x/

and z.x/ D z.r/ for jxj D r , we have

v�.r/ � z.r/; 0 � r � R:

Proof. Let w < 0 be a (radial) solution of

Fk.D
2w/ D f .�v�/ in BR and w D 0 on @BR: (3.13)

In fact w is given explicitly by

w.r/ D �n
1
k

 
n

k

!� 1
k Z R

r

�
sk�n

Z s

0

tn�1f .�v�.t//dt

� 1
k

ds:
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Therefore w satisfies�
dw.r/

dr

�k

D n

 
n

k

!�1

rk�n

Z r

0

tn�1f .�v�.t//dt:

Comparing this equation with the inequality (3.2) in Lemma 3.3, we find

dv�.r/

dr
�
dw.r/

dr
; 0 < r < R:

Integrating this on .r; R/ for any 0 < r < R, we get

v�.r/ � w.r/ for 0 � r � R:

With v�.x/ D v�.r/ and w.x/ D w.r/ for jxj D r , we have

v�.x/ � w.x/ for x 2 BR: (3.14)

Using (3.13) and (3.14), we find that

Fk.D
2w/ D f .�v�/ � f .�w/ in BR:

In summary we see that w and z satisfy´
Fk.D

2w/ � f .�w/ in BR and w D 0 on @BR;

Fk.D
2z/ � f .�z/ in BR and z D 0 on @BR:

By Lemma 3.4, we have
w.x/ � z.x/ in BR: (3.15)

Thus, from (3.14) and (3.15) we conclude

v�.x/ � z.x/ in BR:

The theorem follows.

Corollary 3.7. Let g W Œ0;1/! Œ0;1/ be a non-decreasing smooth function such
that g.0/ D 0 and g.t/ > 0 for t > 0. Under the assumptions of Theorem 3.6, we
have Z

�

g.�v/dx �

Z
��

k�1

g.�z/dx:

Moreover we have
inf
�
v.x/ � inf

��
k�1

z.x/:

Furthermore, equality holds in each of these inequalities if and only if v and z are
solutions of the corresponding equation and � is a ball.
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Proof. Let �.t/ D j¹x 2 � W v.x/ < tºj, and let

��.t/ D j¹x 2 ��n�1 W v
�
n�1.x/ < tºj:

By (2.7) we have

�.t/ � ��.t/ 8t 2 .m0; 0/; m0 D min
�
v:

We note that m0 D v
�
n�1.0/, andZ

�

g.�v/dx D

Z 0

m0

g.�t /d�.t/ D

Z 0

m0

g0.�t /�.t/dt

�

Z 0

m0

g0.�t /��.t/dt D

Z 0

m0

g.�t /d��.t/

D

Z
��n�1

g.�v�n�1/dx:

Since by Theorem 3.6 we have �v�
k�1

.x/ � �z.x/, the first statement follows.
The second statement is true because

inf
�
v.x/ D v�k�1.0/ � z.0/ D inf

��
k�1

z.x/:

Finally, when equality holds in each of these inequalities we must have

v�k�1.x/ D z.x/ 8x 2 �
�
k�1:

Hence, we must have equality in the inequality of Lemma 3.3, but this implies �
is a ball. The corollary is proved.

For u 2 ˆk�1.�/, we define the Hessian integral

I.�; u/ WD

Z
�

.�u/Fk.D
2u/dx:

Proposition 3.8. Let � � Rn be a bounded .k � 1/-convex domain, and suppose
f satisfies condition .3.9/. Let v 2 ˆk�1.�/ be a super-solution of

Fk.D
2v/ D f .�v/ in �;

and let v�
k�1

.x/ be its .k � 1/-symmetrand. If z 2 ˆk�1.�
�
k�1

/ is a sub-solution
of the above equation in the ball ��

k�1
, we have

I.�; v/ � I.��k�1; z/:
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Proof. We have

I.�; v/ D

Z
�

.�v/Fk.D
2v/dx

�

Z
�

.�v/f .�v/dx since v is a super-solution

�

Z
��

k�1

.�z/f .�z/dx by Corollary 3.7

�

Z
��

k�1

.�z/Fk.D
2z/dx since z is a sub-solution

D I.��k�1; z/:

The proposition is proved.

4 Eigenvalues

As already observed, a typical example of f which satisfies condition (3.9) is as
follows: f .t/ D tq , 0 < q < k. In this section we consider the case q D k, that is,
the eigenvalue problem

Fk.D
2u/ D �.�/.�u/k; �.�/ > 0; u < 0 in �; u D 0 on @�: (4.1)

Recall that 1 � k � n. In case of k > 1 we assume � being .k � 1/-convex. In
this situation, it is known (see [9, Theorem 1.3]) that there exists �.�/ > 0 corre-
sponding to which problem (4.1) admits a solution. Of course �.�/ depends also
on k, but in this section k will be fixed. We have

�.�/ D inf
²Z

�

.�v/Fk.D
2v/dx W v 2 Ak�1.�/;

Z
�

.�v/kC1dx D 1

³
: (4.2)

A minimizer u of (4.2) satisfies (4.1) and is unique (see [31, Theorem 4.1]). Of
course, we also have

�.�/ D inf

´R
�.�v/Fk.D

2v/dxR
�.�v/

kC1dx
W v 2 Ak�1.�/

µ
:

Remark 4.1. As in Remark 3.2, we may ask if a minimizer u of �.�/ always be-
longs to ˆk�1.�/. The answer is positive for k D 1 and for k D n, for the same
reasons as in Remark 3.2. For 1 < k < n and � convex, we believe that a mini-
mizer u of �.�/ has convex level sets, but we do not have a proof. The result holds
in case of n D 3 and k D 2, see [16] and [22].
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Proposition 4.2. Given a .k � 1/-convex domain �, let ��
k�1

be the ball with ra-
dius R WD �n�kC1.�/. If �.�/ has a minimizer u 2 ˆk�1.�/, then

�.�/ � �.��k�1/: (4.3)

Equality holds in .4.3/ if and only if � is a ball.

Proof. If u 2 ˆk�1.�/ is a minimizer for �.�/, we have

�.�/ D
1

k

Z
�

T
.k�1/
ij .D2u/uiujdx;

Z
�

.�u/kC1dx D 1:

Putting z D u�
k�1

, by using (2.11) with p D k C 1 we find

�.�/ �
1

k

Z
��

k�1

T
.k�1/
ij .D2z/zizjdx:

By (2.8) with h D k � 1 and p D k C 1 we have

1 D

Z
�

.�u/kC1dx �

Z
��

k�1

.�z/kC1dx:

Therefore, we find

�.�/ �

1
k

R
��

k�1
T

.k�1/
ij .D2z/zizjdxR

��
k�1
.�z/kC1dx

� �.��k�1/:

Now suppose equality holds in (4.3), and let � WD �.�/D �.��
k�1

/. Let us con-
sider an eigenfunction u 2 ˆk�1.�/ of problem (4.1) in� and let u� WD u�

k�1
be

its .k � 1/-symmetrand. Then, by Lemma 3.3 with f .s/ D �sk , we see that�
du�.r/

dr

�k

� n

 
n

k

!�1

rk�n�

Z r

0

tn�1.�u�.t//kdt; 0 < r < R: (4.4)

We show that equality holds, and hence by Lemma 3.3, it will follow that � is a
ball. To this end, let v be an eigenfunction of problem (4.1) in��

k�1
, that is, in the

ball BR centered at the origin and radius R D �n�kC1.�/. We assume that v is
normalized so that u�.0/ D v.0/ < 0. Then,�

dv.r/

dr

�k

D n

 
n

k

!�1

rk�n�

Z r

0

tn�1.�v.t//kdt; 0 < r < R: (4.5)

Let w 2 ˆk�1.BR/ be a (radial) solution of Fk.D
2w/ D �.�u�/k in BR. Then,�

dw.r/

dr

�k

D n

 
n

k

!�1

rk�n�

Z r

0

tn�1.�u�.t//kdt; 0 < r < R:
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By comparing this with (4.4) we see that

du�.r/

dr
�
dw.r/

dr
; 0 < r < R:

Integrating this on .r; R/ for any 0 < r < R, we get �u�.r/ � �w.r/ in .0; R/.
Hence,

Fk.D
2w/ D �.�u�/k � �.�w/k in BR; w D 0 on @BR:

Therefore we have R
BR
.�w/Fk.D

2w/dxR
BR
.�w/kC1dx

� �:

This implies that w is a �-eigenfunction of problem (4.1) in BR, and therefore we
have w D cv for some constant c > 0. Consequently,

�.�u�/k D Fk.D
2w/ D ckFk.D

2v/ D �.�cv/k

in BR. That is cv D u� in .0; R/. In view of the normalization u�.0/ D v.0/, we
find that u� D v. Thus, using this and (4.5), we see that equality holds in (4.4), as
claimed. The proposition is proved.

Assume � is .k � 1/-convex, and suppose problem (4.1) has an eigenfunction
u 2 ˆk�1.�/. Let BR0

be the ball centered at the origin and such that

�.BR0
/ D �.�/:

Let v be the (radial) eigenfunction corresponding to �.BR0
/ normalized either

such that
inf

BR0

v.x/ D inf
�
u.x/; (4.6)

or such thatZ
BR0

.�v.x//pdx D

Z
��

k�1

.�u�.x//pdx; 0 < p <1: (4.7)

Theorem 4.3. Let � be .k � 1/-convex, and let u 2 ˆk�1.�/ be a fixed eigen-
function of problem (4.1). Let BR0

be a ball with radius R0 centered at the origin
such that �.BR0

/ D �.�/ DW �. Let v be an eigenfunction of problem (4.1) with
� D BR0

. If v is normalized as in (4.6), then

u�.r/ � v.r/; 0 < r < R0I

if v is normalized as in (4.7), thenZ r

0

tn�1.�u�.t//pdt �

Z r

0

tn�1.�v.t//pdt; 0 < r < R0:



Isoperimetric inequalities for k-Hessian equations 199

Proof. The idea of the proof is inspired by [7]. If R is the radius of��
k�1

, by Pro-
position 4.1 we have �.BR0

/ � �.BR/, which yields R0 � R. If R0 D R, then
we have � D BR, and there is nothing to prove. Thus, assume R0 < R. We write
u�.x/ D u�.r/ and v.x/ D v.r/ for jxj D r .

Let v be normalized as in (4.6). Since u�.0/D v.0/ and u�.R0/ < v.R0/D 0,
if u�.r/ � v.r/ does not hold, there exists a point r0 2 .0; R0/ such that u�.r0/ D
v.r0/ and either u�.r/ � v.r/ or u�.r/ � v.r/ for 0 < r < r0 with the inequali-
ties being strict at some points. By Lemma 3.3 with f .t/ D �tk , we have�

du�.r/

dr

�k

� n

 
n

k

!�1

rk�n�

Z r

0

tn�1.�u�.t//kdt; (4.8)

and �
dv.r/

dr

�k

D n

 
n

k

!�1

rk�n�

Z r

0

tn�1.�v.t//kdt: (4.9)

In case of u�.r/ � v.r/ on .0; r0/ by (4.8) and (4.9), we get

du�.r/

dr
�
dv.r/

dr
; 0 < r < r0;

with the inequality being strict at some points. Integrating over .0; r0/ and recalling
that u�.0/ D v.0/ we find u�.r0/ < v.r0/, a contradiction.

In case of u�.r/ � v.r/ on .0; r0/, we proceed as follows. Define

w.r/ D

´
u�.r/; r 2 .0; r0�;

v.r/; r 2 .r0; R0�:

By (4.8) and (4.9) we get

�
w0.r/

�k
� n

 
n

k

!�1

rk�n�

Z r

0

tn�1.�w.t//kdt; 0 < r < R0: (4.10)

Furthermore, we have w.r/ < 0 for r 2 .0; R0/, w.R0/ D 0; and clearly w.r/ is
not equal to cv.r/ for any constant c. Therefore,

� <

R
BR0

.�w/Fk.D
2w/dxR

BR0
.�w/kC1dx

: (4.11)

As w is a radial function, with w.r/ D w.x/ for r D jxj we have (see [28, p. 99])

Fk.D
2w/ D

 
n � 1

k � 1

!
r�nC1

�
rn�k

k
.w0/k

�0
:
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Therefore, using the latter equation and (4.10) we findZ
BR0

.�w/Fk.D
2w/dx D n!n

Z R0

0

.�w/

 
n � 1

k � 1

!�
rn�k

k
.w0/k

�0
dr

D !n

 
n

k

!Z R0

0

w0rn�k.w0/kdr

� �n!n

Z R0

0

w0.r/dr

Z r

0

tn�1.�w.t//kdt

D �n!n

Z R0

0

rn�1.�w.r//kC1dr

D �

Z
BR0

.�w/kC1dx:

Insertion of this inequality into (4.11) yields � < �, a contradiction. Hence, we
must have u�.r/ � v.r/ on Œ0; R0�, as claimed.

Let v be normalized as in (4.7). It follows that there exists (at least) one point
r0 2 .0; R0/ such that u�.r0/ D v.r0/. We claim that there is only one point r0
such that u�.r0/ D v.r0/. Arguing by contradiction, we consider two possibilities.
Assume u�.r1/ D v.r1/, u�.r0/ D v.r0/, u�.r/ < v.r/ on .0; r1/ and u�.r/ �
v.r/ on .r1; r0/. Putting

w.r/ D

´
u�.r/; r 2 .0; r1�;

v.r/; r 2 .r1; R0�:

we see that w satisfies inequality (4.10). Arguing as in the previous case, we get a
contradiction.

Now let u�.r1/ D v.r1/, u�.r0/ D v.r0/, u�.r/ � v.r/ on .0; r1/ and u�.r/ <
v.r/ on .r1; r0/. Putting

w.r/ D

8̂<̂
:
v.r/; r 2 .0; r1�;

u�.r/; r 2 .r1; r0�;

v.r/; r 2 .r0; R0�;

w satisfies again inequality (4.10), and arguing as in the previous case we still get
a contradiction.

Hence, we must have

u�.r/ > v.r/; 0 < r < r0;

and
u�.r/ < v.r/; r0 < r < R0:
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By (4.7) we haveZ R0

0

tn�1.�u�.t//pdt �

Z R0

0

tn�1.�v.t//pdt:

Let us rewrite this inequality asZ R0

r0

tn�1
�
.�u�.t//p � .�v.t//p

�
dt �

Z r0

0

tn�1
�
.�v.t//p � .�u�.t//p

�
dt:

Since �u�.t/ > �v.t/ for r0 < t < R0, it follows that, for any r 2 Œr0; R0�,Z r

r0

tn�1
�
.�u�.t//p � .�v.t//p

�
dt �

Z r0

0

tn�1
�
.�v.t//p � .�u�.t//p

�
dt;

that is, Z r

0

tn�1.�u�.t//pdt �

Z r

0

tn�1.�v.t//pdt; r 2 Œ0; R0�:

The proof of the theorem is complete.
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