期刊论文详细信息
Advances in Nonlinear Analysis | |
A class of degenerate elliptic eigenvalue problems | |
article | |
Marcello Lucia1  Friedemann Schuricht2  | |
[1] Mathematics Department, The City University of New York;Technische Universität Dresden | |
关键词: Nonlinear eigenvalue problems; quasilinear elliptic equations; critical point theory; convex analysis; nonsmooth analysis; | |
DOI : 10.1515/anona-2012-0202 | |
学科分类:社会科学、人文和艺术(综合) | |
来源: De Gruyter | |
【 摘 要 】
Abstract. We consider a general class of eigenvalue problems where the leading elliptic term corresponds to a convex homogeneous energy function that is not necessarily differentiable. We derive a strong maximum principle and show uniqueness of the first eigenfunction. Moreover we prove the existence of a sequence of eigensolutions by using a critical point theory in metric spaces. Our results extend the eigenvalue problem of the p -Laplace operator to a much more general setting.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202107200000820ZK.pdf | 319KB | download |