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A class of degenerate elliptic eigenvalue problems

Marcello Lucia and Friedemann Schuricht

Abstract. We consider a general class of eigenvalue problems where the leading ellip-
tic term corresponds to a convex homogeneous energy function that is not necessarily
differentiable. We derive a strong maximum principle and show uniqueness of the first
eigenfunction. Moreover we prove the existence of a sequence of eigensolutions by using
a critical point theory in metric spaces. Our results extend the eigenvalue problem of the
p-Laplace operator to a much more general setting.
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1 Introduction

The classical eigenvalue problem��u D �u and some of its nonlinear extensions
involving the p-Laplace operator div jDujp�2Du have in common that they are
related to a variational problem where a convex coercive function E as, e.g.,Z

�

jDujp dx; 1 < p <1;

corresponds to the leading elliptic term in the partial differential equation. The
usual techniques for deriving typical properties of elliptic problems like maximum
principle, uniqueness of the solution, or the existence of a sequence of eigenso-
lutions are known to work for problems where the corresponding function E has
certain differentiability properties. However the inherent property of ellipticity is
rather convexity than smoothness of E. In this paper we want to demonstrate for
a general class of eigenvalue problems that, by extending and supplementing the
standard techniques, we can derive the typical properties also for elliptic problems
where the leading term corresponds to a function E that is convex but lacks the
usual smoothness assumptions.
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More precisely, we consider the constrained variational problem

E.u/ WD

Z
�

A.x;Du/ dx ! MinŠ

subjected to

G.u/ WD

Z
�

!jujp dx D 1

where � � Rn might be unbounded, ! is allowed to change sign, and A.x; � / is
assumed to be convex but not necessarily differentiable. This kind of problem has
been studied by Szulkin & Willem [22] for the special case of A.x;Du/ D jDujp

with 1 < p <1 which corresponds to the nonlinear eigenvalue problem

� div jDujp�2Du D �!jujp�2u:

In our more general case we are led to the eigenvalue problem

� div a D p�!jujp�2u

where a is coupled to u by a.x/ 2 @A.x;Du.x// a.e. on � with @A denoting
the convex subdifferential of A.x; � /. Assuming some p-growth on A.x; � / we
show that the minimizer u of the variational problem, that exists in a suitable
space, is a weak solution of this eigenvalue problem with homogeneous boundary
conditions and that it is unique (up to sign). For the verification of uniqueness,
we extend to our framework a strong maximum principle due to Ancona [2] and
Brezis & Ponce [8]. Finally we show the existence of a sequence ¹ukº of eigen-
functions with corresponding eigenvalues �k !1. If ! changes sign, our argu-
ments also apply to�! and provide a sequence of eigenfunctions with eigenvalues
�k ! �1.

The leading term in our general eigenvalue problems is not only of analytical
interest but also of practical relevance, since it describes, e.g., anisotropic diffu-
sion and heat flux. Recall that the simplest model for diffusion is based on Fick’s
law where the flux j has the form �B �Du. Here B is the diffusion tensor and
we are led to the term � div.B �Du/ in a corresponding differential equation.
Note that, for general B , the flux j has not to be parallel to Du, i.e. some kind
of anisotropic diffusion is covered. Basic nonlinear models (e.g. Perona-Malik)
assume that j D ˇ.jDuj/Du for a scalar function ˇ. While this describes an
isotropic situation, the use of an anisotropic norm jDuj� as argument of ˇ leads
to an anisotropic model. Combining the idea that the flux has not to be parallel
to Du and that the intensity of diffusion might depend on some magnitude of
Du through a function ˇ. � /, we are readily led to models where the flux has the
form j D A0.Du/ with a convex function A W Rn ! R. Simple examples would
be given, e.g., by A.Du/ D jDujpq , that is anisotropic for q ¤ 2. In the limit cases
q D 1 or q D1, the function A. � / is not differentiable anymore and we can re-
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place the diffusion law by j 2 @A.Du/ (where @ denotes the convex subdifferen-
tial). This way one can describe diffusion in structured materials where diffusion
takes place only in special preferred directions and where the flux direction might
jump at certain directions of Du. Notice that the theory we are presenting covers
such general diffusion laws.

The precise formulation of the problem and explicit nonsmooth examples for
function A are provided in Section 2. Some preliminary material about the (sub-)
differentiability of underlying functions is collected in Section 3. In Section 4 we
state the existence of a minimizer of the constrained variational problem and we
show that it is a weak solution of the corresponding eigenvalue problem. Here we
use a general result from convex analysis that is derived in Section A.1. Section 5
is devoted to the strong maximum principle for non-negative weak solutions of the
eigenvalue problem. Here we apply some results about capacity and a Poincaré
inequality that are summarized in Section A.3. The uniqueness of the first eigen-
function is shown in Section 6 by using that maximum principle. Section 7 verifies
the existence of a sequence of eigensolutions on the basis of a critical point theo-
rem, derived in Section A.2, that is a modified version of a general result due to
Degiovanni & Marzocchi [10].

Notation. The closure of a set A is denoted by NA. We write Br.u/ for the open
ball of radius r centered at u. For a Banach space X , its dual is X� and hu�; ui
stands for the duality pairing. In particular, h� ; �i is the scalar product in Rn. By
sgn˛ we denote the sign of ˛ 2 R and

Sgn˛ WD

´
¹sgn˛º if ˛ ¤ 0;
Œ�1; 1� if ˛ D 0;

is the set-valued sign function. For u W �! R we define

¹u > 0º WD ¹x 2 �j u.x/ > 0º

and, analogously, ¹u D 0º etc. Moreover, uC and u� are the positive and negative
part of u, respectively, such that u D uC � u�. The subdifferential of a convex
function F at u is denoted by @F.u/ and F 0.uI v/ stands for the one-sided direc-
tional derivative of F at u in direction v. We write j � jp for the p-norm in Rn and
we set j � j WD j � j2. In several estimates c > 0 is a generic positive constant that
can differ from one equation or inequality to the next one. Denote by Lp.�/ the
usual Lebesgue space of p-integrable functions, Lp

0

.�/ its dual, and W 1;p.�/

the Sobolev space of p-integrable functions having p-integrable weak derivatives.
Then Lploc.�/ and W 1;p

loc .�/ are the spaces of functions where any restriction to
a compact subset belongs to the corresponding spaces. We write a.e. for “almost
everywhere” and q.e. for “quasi everywhere” (cf. Section A.3).
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2 Problem

For � � Rn open, 1 < p <1, let D1;p0 .�/ be the completion of C10 .�/ with
respect to the norm

kDukLp WD

�Z
�

jDujp dx

�1=p
where we exclude p � n if� is unbounded (since the elements ofD1;p0 .�/ cannot
be identified with a function in L1loc.�/ in that case). Notice that

� D
1;p
0 .�/ � W

1;p
loc .�/,

� D
1;p
0 .�/ D W

1;p
0 .�/ if � is bounded,

� W
1;p
0 .�/ ¤ D

1;p
0 .�/ if � is unbounded.

SinceD1;p0 .�/ can be considered as a closed subspace of a cross productLp.�/n,
it is uniformly convex and, thus, also reflexive (cf. Adams [1, p. 7f.] and Sec-
tion A.4). Moreover,

� D
1;p
0 .�/ ,! Lp�.�/ continuously for p� D np

n�p
if p < n (follows from

the Gagliardo–Nirenberg–Sobolev inequality),
� D

1;n
0 .�/ ,! L Qp.�/ is compact if 1 � Qp <1,

� D
1;p
0 .�/ ,! L1.�/ is compact if p > n.

If � is bounded, then D1;p0 .�/ ,! Lq.�/ is compact for all 1 � q < p�. Notice
that any weakly convergent sequence un * u inD1;p0 .�/ has a subsequence con-
verging pointwise a.e. on� (for� bounded this follows from the compact embed-
dingD1;p0 .�/ ,! L1.�/ and for� unbounded we can consider a sequence Bn of
balls covering � and then we use the compact embedding W 1;p.Bn/ ,! L1.Bn/

and stepwise select subsequences).
Henceforth we set X WD D1;p0 .�/, and for a weight function ! 2 L1loc.�/ with

!C 6� 0 we define

Y WD

²
u 2 X

ˇ̌̌̌ Z
�

j!j jujp dx <1

³
and

Y C WD

²
u 2 Y

ˇ̌̌̌ Z
�

! jujp dx > 0

³
:

We want to consider the minimization problem

� WD inf
u2YC

R
�A.x;Du/ dxR
� ! juj

p dx
(2.1)
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and, first, let us formulate basic assumptions we want to use.

(A) A W � �Rn ! R with A.x; � / convex for all x 2 �, and A. � ; q/ measur-
able for all q 2 Rn. (Notice that A.x; � / is continuous for all x 2 �, and
that the subdifferential @A.x; q/ of A.x; � / at q is nonempty for all x 2 �,
q 2 Rn.)

(A1) There are c1, c2, c3 > 0, ˇ 2 L1.�/ such that for a.e. x 2 �

(a) 0 � A.x; q/ � c1jqjp C ˇ.x/ for all q 2 Rn,

(b) ha; qi � c2jqjp for all a 2 @A.x; q/, q 2 Rn,

(c) jaj � c3jqjp�1 for all a 2 @A.x; q/, q 2 Rn.

(A2) A.x; tq/ D jt jpA.x; q/ for all t 2 R, x 2 �, q 2 Rn.

(WC) p ¤ n, !C 6� 0 and furthermore
� if p < n, then !C 2 Ln=p.�/,
� if p > n, then !C 2 L1.�/ and � bounded.

Let us start with some simple consequences of theses assumptions. From (A),
(A2) we get

ha; qi D pA.x; q/ for all q 2 Rn; a 2 @A.x; q/ (2.2)

by evaluating A.x; tq/ � A.x; q/ � ha; tq � qi for t ! 1. Consequently, if we
assume (A), (A2), then (A1b) implies

c2jqj
p
� pA.x; q/ for all x 2 �; q 2 Rn; (2.3)

and (A1c) implies

pA.x; q/ � c3jqj
p for all x 2 �; q 2 Rn:

Hence (A), (A1b), (A1c), (A2) imply (A1a).
Let us mention that we work with condition (WC) for the sake of simplicity. It

can be relaxed by working in some Lorentz spaces as in [3]. Our main intention is
to focus on techniques necessary in the absence of differentiability in the elliptic
term. While it is standard to treat that kind of problem for integrands A where
A.x; � / is smooth, here we want to demonstrate that smoothness is not needed.

Examples. Let us first provide some simple examples of A satisfying all of our
assumptions stated above but without being smooth. First we consider

A1.q/ WD

 
nX

jD1

jqj j

!p
D jqj

p
1 for all q D .q1; : : : ; qn/ 2 Rn:
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Obviously, the functions fj .q/ WD jqj j, j D 1; : : : ; n, are convex on Rn with the
subdifferential

@fj .q/ D ¹.0; : : : ; 0; 'j ; 0; : : : ; 0/ 2 Rn j 'j 2 Sgn.qj /º:

For f .q/ WD
Pn
jD1 jqj j the sum rule implies that

@f .q/ D Sgn.q1/ � � � � � Sgn.qn/:

Since g.t/ WD jt jp is continuously differentiable on R for p > 1, we can apply the
chain rule of Clarke [9, Theorem 2.3.9] to get

@A1.q/ D p

 
nX

jD1

jqj j

!p�1�
Sgn.q1/ � � � � � Sgn.qn/

�
for all q 2 Rn:

Using the equivalence of norms on Rn and (2.2) we readily verify (A1a)–(A1c)
for A1. Analogously we can argue for

A2.q/ WD
�

max
jD1;:::;n

jqj j
�p
D jqjp1 for all q D .q1; : : : ; qn/ 2 Rn

where

@A2.q/ D p
�

max
jD1;:::;n

jqj j
�p�1

conv¹Sgn.qj /ej j jqj j D A2.q/; j D 1; : : : ; nº

with e1; : : : ; en being the standard unit vectors in Rn. While A1 and A2 are not
strictly convex, we can easily construct strictly convex nonsmooth functions A by,
e.g.,

A3.q/ WD .jqj1 C jqj2/
p for all q D .q1; : : : ; qn/ 2 Rn:

3 Preliminary considerations

Before we formulate some general existence result and derive further properties of
a minimizer, let us start with some preliminary considerations.

With � as in (2.1), problem (2.1) is equivalent to

F.u/ WD

Z
�

A.x;Du/ dx � �

Z
�

! jujp dx ! Min!; u 2 Y C; (3.1)

where infYC F D 0. By (A2) we readily see that any t Nu with t 2 R solves (2.1)
as long as Nu 2 Y C is a solution. Therefore attention can be restricted to minimizer
normalized by

R
� ! juj

p dx D 1 and, in this sense, (2.1) is also equivalent to the
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constraint problem

E.u/ WD

Z
�

A.x;Du/ dx ! Min!; u 2 Y C; (3.2)

subject to

G.u/ WD

Z
�

! jujp dx D 1: (3.3)

Later we also use the notation

G˙.u/ WD

Z
�

!˙ jujp dx:

Lemma 3.1. Let (A), (A1a) be satisfied. Then:

(1) E is convex and continuous on X and, thus, also locally Lipschitz continuous
on X .

(2) The (one-sided) directional derivative E 0.uI v/ exists for all u; v 2 X .

(3) We have @E.u/ ¤ ; for all u 2 X and for any E� 2 @E.u/ there is some
a 2 Lp

0

.�;Rn/ with

a.x/ 2 @A.x;Du.x// for a.e. x 2 �

such that
hE�; vi D

Z
�

ha.x/;Dv.x/i dx for all v 2 X:

Proof. Let v1, v2 2 X . Then, using convexity of A.x; � /,

E

�
v1 C v2

2

�
D

Z
�

A

�
x;
Dv1.x/CDv2.x/

2

�
dx

�

Z
�

A.x;Dv1.x//C A.x;Dv2.x//

2
dx D

E.v1/CE.v2/

2

and, thus, E is convex.
Let now vn ! v in X . Thus Dvn ! Dv in Lp.�/ and, possibly for a subse-

quence, Dvn.x/! Dv.x/ a.e. on � and

A.x;Dvn.x//! A.x;Dv.x// for a.e. x 2 �:

By (A1a),

jA.x;Dvn.x//j � c1jDvn.x/j
p
C ˇ.x/ for a.e. x 2 �:

With generalized dominated convergence we getE.vn/! E.v/. The subsequence
principle then implies continuity of E. By convexity, E is even locally Lipschitz
continuous on X (cf. [9, p. 34]).
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Since E is convex and (locally Lipschitz) continuous on X , the existence of a
finite one-sided directional derivative E 01.uI v/ for all u; v 2 X is a standard result
of convex analysis and, moreover, @E.u/ ¤ ; for all u 2 X (cf. Barbu & Precu-
panu [5, Chapter 2.1]). The structure assertion about E� is a direct consequence
of Proposition A.3 in the Appendix.

Lemma 3.2. We have:

(1) Y is a linear subspace in X .

(2) Let u 2 Y C and v 2 Y . Then there is t0 > 0 such that uC tv 2 Y C for all
jt j < t0.

Proof. Let u1; u2 2 Y . Obviously tu1 2 Y for all t 2 R. Moreover, by convexity
there is some c > 0 withZ

�

j!j ju1 C u2j
p dx � c

Z
�

j!j .ju1j
p
C ju2j

p/ dx

which implies the first assertion. For the second assertion we use the analogous
estimate that

j!.x/j ju.x/C tv.x/jp � cj!.x/j
�
ju.x/jpCjt jpjv.x/jp

�
for all t 2 R; x 2 �;

and that

lim
t!0

!.x/ ju.x/C tv.x/jp D !.x/ ju.x/jp for all x 2 �:

Thus, by dominated convergence,

lim
t!0

Z
�

! juC tvjp dx D

Z
�

! jujp dx > 0

which readily implies (2).

Lemma 3.3. We have that G W Y ! R is well-defined and the directional deriva-
tive G0.uI v/ is given by

G0.uI v/ D p

Z
�

!jujp�2uv dx for all u 2 Y C; v 2 Y: (3.4)

If in addition (WC) is satisfied, then

GC.u/ D

Z
�

!Cjujp dx <1 for all u 2 X

and GC is weakly continuous on X (i.e. vn * v implies GC.vn/! GC.v/).
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Proof. The definition of Y directly implies that G is well-defined on Y . Now, let
u 2 Y C, v 2 Y be fixed. Then, for jt j small, uC tv 2 Y and

G.uC tv/ D

Z
�

! juC tvjp dx

is finite. For  .x; t/ WD !.x/ ju.x/C tv.x/jp we have

 t .x; t/ D p! juC tvj
p�2.uC tv/v for a.e. x 2 � and all t 2 R.

Hence, using Young’s inequality and convexity,

1
p
j t .x; t/j D j!j

p�1
p juC tvjp�1j!j

1
p jvj

�
p � 1

p
j!j juC tvjp C 1

p
j!j jvjp

� c
p � 1

p
j!j

�
jujp C jvjp

�
C
1

p
j!j jvjp (3.5)

for a.e. x 2 � and all jt j < 1. Since the right hand side is integrable, we obtain
(cf. Zeidler [24, p. 1018])

G0.uI v/ D lim
t!0

G.uC tv/ �G.u/

t
D

Z
�

 t .x; 0/ dx D p

Z
�

!jujp�2uv dx:

Let us now verify thatGC is weakly continuous. The arguments are well known,
and we give it here for the sake of completeness. We first consider p < n. Let
un * u in X , and let " > 0. On the one hand, the fact that un is bounded in
Lp
�

.�/ together with Hölder inequality imply the existence of a ball B such thatZ
�nB

!C
ˇ̌
junj

p
� jujp

ˇ̌
dx < ": (3.6)

On the other hand, since junjp is bounded in Lp
�=p.� \ B/ and junjp ! jujp

strongly inL1loc.�/, we easily deduce that junjp * jujp inLp
�=p.�\B/. There-

fore, since !C is in the dual of Lp
�=p.�/, we deduce

lim
n!1

Z
�\B

!C
�
junj

p
� jujp

�
dx D 0: (3.7)

From (3.6) and (3.7) we deduce GC.un/! GC.u/.
For p > n we recall that � is bounded and that the embedding

D
1;p
0 .�/ ,! L1.�/

is compact. This readily implies the assertion.



100 M. Lucia and F. Schuricht

4 Existence and Euler–Lagrange equation

Let us first verify the existence of a solution to the minimizing problem (2.1).

Theorem 4.1. Let (A), (A1b), (A2), (WC) be satisfied. Then (2.1) has a minimizer
in Y C.

Proof. We verify the existence of a solution of (3.2), (3.3). For that we consider a
minimizing sequence ¹unº � Y C. By (2.3) it is bounded in X and, thus, we may
assume that un *W u 2 X . SinceE is convex and continuous onX by Lemma 3.1,
it is weakly lower semicontinuous and E.u/ � lim infn!1E.un/. Since GC is
weakly continuous on X by Lemma 3.3, Fatou’s lemma implies that

GC.u/ D lim
n!1

GC.un/ D lim
n!1

G�.un/C 1 � G�.u/C 1:

Hence u 2 Y C with G.u/ � 1, i.e. u 2 Y C. By (A2) we conclude that u has to be
a minimizer.

We now assume that Nu 2 Y C is a solution of (2.1) or, equivalently, of (3.1) and
we claim to derive a necessary condition for it.

Lemma 4.2. Let (A), (A1a) be satisfied. Then the solution Nu of (3.1) satisfies

E 0. NuI v/ � �G0. NuI v/ � 0 for all v 2 Y: (4.1)

Moreover, there is E� 2 @E. Nu/ such that

hE�; vi � �G0. NuI v/ D 0 for all v 2 Y:

Proof. Fix any v 2 Y . Since Nu 2 Y C, we know from Lemma 3.2 that there is
t0 > 0 such that NuC tv 2 Y C for all jt j < t0. Hence all NuC tv with jt j small are
admissible for the variational problem (3.1) and

F. NuC tv/ � F. Nu/ � 0 for all jt j < t0:

By the existence of the directional derivatives according to Lemmas 3.1 and 3.3
we readily obtain (4.1).

Since E is locally Lipschitz continuous on X according to Lemma 3.1, there is
Qc > 0 such that

E 0. NuI v/ � Qc kvk for all v 2 X:

Thus, by (4.1),

�G0. NuI v/ � E 0. NuI v/ � Qc kvk for all v 2 Y:



A class of degenerate elliptic eigenvalue problems 101

Consequently, G0. NuI � / is linear and continuous on Y . Since E 0. NuI � / is sublinear
on X , the Hahn–Banach Theorem provides the existence of some E� 2 X� with

hE�; vi D �G0. NuI v/ for all v 2 Y; (4.2)

hE�; vi � E 0. NuI v/ for all v 2 X: (4.3)

Since E is continuous at Nu, the last inequality implies that E� 2 @E. Nu/ (cf. Barbu
[4, Proposition I.1.6]) and the assertion is a consequence of (4.2).

As a direct consequence of Lemma 3.1, Lemma 3.3 and Lemma 4.2 we obtain
the following theorem where we use the decomposition ! D !C � !� for the last
inequality.

Theorem 4.3. Let (A), (A1a) be satisfied and let Nu be a solution of (3.1). Then
there is a 2 Lp

0

.�;Rn/ with

a.x/ 2 @A.x; Nu.x// for a.e. x 2 � (4.4)

such thatZ
�

ha.x/;Dv.x/i dx � p�

Z
�

!j Nujp�2 Nuv dx D 0 for all v 2 Y: (4.5)

Moreover, if Nu � 0 a.e. on �, thenZ
�

ha.x/;Dv.x/i dx C p�

Z
�

!�j Nujp�2 Nuv dx � 0

for all v 2 C10 .�/ with v � 0.

Notice that (4.5) can be written, in the distributional sense, as

� div a D p�!j Nujp�2 Nu on �

where a is coupled to Nu by (4.4). In the special case of A.x; q/ D jqjp, that meets
all of our assumptions, we recover the (nonlinear) eigenvalue problem for the p-
Laplace operator.

5 Strong maximum principle

Let us state the strong maximum principle for the type of problems we have con-
sidered before where we follow ideas of Brezis & Ponce, cf. [8]. The notion of
capacity as used here is precisely formulated in Section A.3 below.
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Proposition 5.1. Let� � Rn be a domain and assume that A W � �Rn ! R and
! 2 L1loc.�/ satisfy (A), (A1b) and (A1c). Moreover let u 2 W 1;p

loc .�/ with u � 0
a.e. on � be quasi-continuous and let it satisfyZ

�

ha.x/;Dv.x/i dx C p�

Z
�

!�jujp�2uv dx � 0 (5.1)

for all v 2 C10 .�/ with v � 0 for some measurable selection

a.x/ 2 @A.x;Du.x// for a.e. x 2 �:

Then, denoting the set of zeros by

Z WD ¹x 2 � j u.x/ D 0º; (5.2)

we have that either capp.Z/ D 0 or u � 0.

Remark 5.2. (1) Let us mention that the result is not true in the case p D 1 where
typical solutions of the eigenvalue problem of the 1-Laplace operator vanish
on a set with positive Lebesgue measure (cf. Kawohl & Schuricht [17]).

(2) Notice that in the case p > n, where we only consider bounded�, the capacity
capp.¹xº/ > 0 for any x 2 �. Therefore, either Z D ; or u � 0.

Proof. We need to show that u � 0 if capp.Z/ > 0. We borrow here the arguments
found in [8], and the main idea is to prove that for any � 2 C10 .�/with 0 � � � 1
there is a constant c0 WD c0.�/ > 0 such thatZ

�

ˇ̌̌̌
D log

�
1C

u

ı

�ˇ̌̌̌p
�p dx � c0 for all ı > 0: (5.3)

To derive (5.3) we proceed as follows:Z
�

ˇ̌̌̌
D log

�
1C

u

ı

�ˇ̌̌̌p
�p dx

D

Z
�

jDujp.uC ı/�p �p dx

�
1

c2

Z
�

ha.x/;Dui.uC ı/�p �p dx .by (A1b)/

D �
1

c2.p � 1/

Z
�

ha.x/;D.uC ı/1�pi �p dx

D �
1

c2.p � 1/

Z
�

�
a.x/;D

�
�p

.uC ı/p�1

�
�

D�p

.uC ı/p�1

�
dx:
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Note that the differential inequality (5.1) with v D �p=.uC ı/p�1 and a density
argument (since v 62 C10 .�/ in general) shows that

�

Z
�

�
a.x/;D

�
�p

.uC ı/p�1

��
dx � p�

Z
�

!�.x/jujp�1
�p

.uC ı/p�1
dx: (5.4)

From (5.4) and the assumption (A1c), we then obtain

c2.p � 1/

Z
�

ˇ̌̌̌
D log

�
1C

u

ı

�ˇ̌̌̌p
�p dx

� p�

Z
�

!�.x/jujp�1
�p

.uC ı/p�1
dx C c3

Z
�

�
jDuj

uC ı

�p�1
jD�pj dx

D p�

Z
�

!�.x/jujp�1
�p

.uC ı/p�1
dx„ ƒ‚ …

I1

C c3p

Z
�

ˇ̌̌̌
D log

�
1C

u

ı

�ˇ̌̌̌p�1
�p�1 jD�j dx„ ƒ‚ …

I2

: (5.5)

To estimate I1, we note that 0 � juj
uCı

< 1 and get

I1 � p�

Z
�

!��p dx: (5.6)

Let us now estimate I2. By using the inequality ab � "r a
r

r
C

bs

s"s (1
r
C

1
s
D 1,

" > 0) with r D p
p�1

, s D p, we can find a constant Qc D Qc.�/ such that

I2 � c2
p � 1

2

Z
�

ˇ̌̌̌
D log

�
1C

u

ı

�ˇ̌̌̌p
�p dx C Qc: (5.7)

Hence, by plugging estimates (5.6) and (5.7) in (5.5), we get

c2
p � 1

2

Z
�

ˇ̌̌̌
D log

�
1C

u

ı

�ˇ̌̌̌p
�p dx � p�

Z
�

!��p dx C Qc:

Therefore, given � 2 C10 .�/, we can find a constant c0 D c0.�/ such that (5.3)
holds.

To proceed with the proof of Proposition 5.1, let us first notice that the set of
zeros of the function x 7! log.1C u.x/

ı
/ coincides with Z for any ı > 0. More-

over, by modifying u on a set of capacity zero, we may assume that Z is a Borel
set (cf. Proposition A.7).
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Now let the set Z have positive capacity, i.e. cappZ > 0. We can find open balls
Bk �� �, k 2 N, such that [

k2N

Bk D �:

Then
0 < CappZ �

X
k2N

Capp.Z \ Bk/:

Clearly there is some j 2 N such that Capp.Z \ Bj / > 0. Let us now choose any
domain U �� � with Bj � U and with Lipschitz boundary @U . We consider
� 2 C10 .�/ with 0 � � � 1 and � � 1 on U . Then we can apply the Poincaré
inequality stated in Proposition A.6 to the functions log.1C u

ı
/ (note that u equals

its precise representative u? q.e., since it is quasi-continuous, cf. Section A.3). Still
using (5.3), we find a constant c WD c.U / such thatZ

U

ˇ̌̌̌
log
�
1C

u

ı

�ˇ̌̌̌p
dx � c for all ı > 0:

Since ı is arbitrary, the above uniform bound implies that u D 0 a.e. in U . Since
U can be chosen arbitrarily, we deduce that u D 0 a.e. in � as claimed.

6 Uniqueness

Proposition 6.1. Let (A), (A1a) be satisfied, let A.x; 0/ D 0, and let

u 2 Y C � D
1;p
0 .�/

be a minimizer of (2.1). Then either uC or u� is also a minimizer.

Proof. Recall thatDu˙ D Du a.e. on ¹u˙ > 0º andDu D 0 a.e. on ¹u D 0º (cf.
[13, p. 130]). Since a minimizer satisfies (4.5) with v D u˙,Z

�

ha;Du˙i dx D �

Z
�

!ju˙jp dx:

By convexity of A.x; � /,

�A.x; q/ D A.x; 0/�A.x; q/ � a � .�q/ for all x 2 �, q 2 Rn, a 2 @A.x; q/.

Using a.x/ 2 @A.x;Du.x// D @A.x;Du˙.x// a.e. on ¹u˙ > 0º, we getZ
�

!ju˙jp dx �
1

�

Z
�

A.x;Du˙/ dx � 0:
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Consequently,

� D

R
�A.x;Du/ dxR
� !juj

p dx
D

R
�A.x;Du

C/ dx C
R
�A.x;Du

�/ dxR
� !juj

p dx

D

R
�A.x;Du

C/ dxR
� !ju

Cjp dx

R
� !ju

Cjp dxR
� !juj

p dx
C

R
�A.x;Du

�/ dxR
� !ju

�jp dx

R
� !ju

�jp dxR
� !juj

p dx

� min
²R
�A.x;Du

C/ dxR
� !ju

Cjp dx
;

R
�A.x;Du

�/ dxR
� !ju

�jp dx

³
: (6.1)

Thus either uC or u� has to be a minimizer.

Proposition 6.2. Let � � Rn be a domain, let (A), (A1a)–(A1c) be satisfied, let
A.x; 0/ D 0 for all x 2 �, and let u 2 Y C � D1;p0 .�/ be a minimizer of (2.1).
Then either u > 0 or u < 0 q.e. on �.

Proof. According to the previous proposition let, without loss of generality, uC

be also minimizer. Since uC 6� 0, the strong maximum principle implies that

Capp¹u
C
D 0º D 0

and, thus, uC > 0 q.e. on �. But this implies the assertion.

Proposition 6.3. Let (A), (A2) be satisfied and let u; v 2 Y C � D1;p0 .�/ be min-
imizers of (2.1) satisfying u > 0, v > 0 q.e. on � and being normalized byZ

�

!up dx D

Z
�

!vp dx D 1:

Then

 WD

�
up C vp

2

� 1
p

is also a minimizer of (2.1) withZ
�

! p dx D 1:

In addition, let A.x; � / be strictly convex for all x 2 �. Then

vDu D uDv q.e. on �: (6.2)

Proof. Here we follow some arguments from Belloni & Kawohl [7]. We readily
see that  is normalized and we show that it is a minimizer. Obviously

D D
1

2
1
p

up�1DuC vp�1Dv

.up C vp/1�
1
p

:
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Thus, using convexity and homogeneity of A.x; � /,

A.x;D / D
up C vp

2
A

�
x;

up

up C vp
Du

u
C

vp

up C vp
Dv

v

�
�
up C vp

2

�
up

up C vp
A

�
x;
Du

u

�
C

vp

up C vp
A

�
x;
Dv

v

��
(6.3)

D
1

2
.A.x;Du/C A.x;Dv//:

By integrating over � we see that  is a minimizer and we must have equality
in (6.3) a.e. on �. But, under the additional assumption of strict convexity, this
implies the final assertion.

As shown in [19], condition (6.2) implies the final uniqueness statement.

Proposition 6.4. Let� � Rn be a domain, let (A), (A1a)–(A1c), (A2) be satisfied,
and letA.x; � / be strictly convex. If (2.1) admits a minimizer u 2 Y C � D1;p0 .�/,
then u is unique in the sense that any minimizer has to be a multiple of u.

7 Higher eigenvalues

A minimizer u 2 Y C of (2.1) satisfies the eigenvalue equation (4.5), i.e. there is
some function a 2 Lp

0

.�;Rn/ with

a.x/ 2 @A.x; u.x// for a.e. x 2 �

such thatZ
�

ha.x/;Dv.x/i dx � p�

Z
�

!jujp�2uv dx D 0 for all v 2 Y: (7.1)

Let us now look for higher eigensolutions, i.e. let us verify the existence of a
sequence of solutions un of (7.1) with corresponding eigenvalues �n !1. For
that we are looking for critical points of E subject to the constraint

K WD ¹u 2 Y j G.u/ D 1º:

Notice that the special case of the p-Laplace operator has been treated by Szulkin
& Willem [22]. In our more general setting we are confronted with the difficulty
that E may not be differentiable. Thus we cannot define critical points u in the
classical way that E 0.u/ � �G0.u/ D 0. Instead we say that u is a critical point
of (3.2), (3.3) if the weak slope jdEjK.u/ in the metric space K, that replaces
kE 0.u/ � �G0.u/k, vanishes (cf. Degiovanni & Marzocchi [10]).
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For our analysis we need some Palais–Smale condition as compactness con-
dition. Therefore we assume that ! satisfies (WC) and we work in the different
Banach space

QX WD

²
v 2 D

1;p
0 .�/

ˇ̌̌̌
kvk WD

�Z
�

jDvjp dx C

Z
�

!�jvjp dx

� 1
p

<1

³
:

Obviously QX ,! X continuously and Y � QX . From (7.4) below we get QX � Y
and, hence, Y D QX as sets. We start by collecting properties of the space QX , and
of the maps

G˙.u/ D

Z
�

!˙jujp dx:

Proposition 7.1. We have that:

(1) QX is a uniformly convex Banach space and therefore reflexive.

(2) G� is continuously differentiable on QX with

hG0�.u/; vi D

Z
�

!�jujp�2uv dx for all u; v 2 QX:

(3) If (WC) is satisfied, then GC is continuously differentiable on QX with

hG0C.u/; vi D

Z
�

!Cjujp�2uv dx for all u; v 2 QX

and G0
C
W QX ! QX� is completely continuous.

Notice that in a uniformly convex Banach space un ! u as long as un * u and
kunk ! kuk (cf. Zeidler [23, p. 604]).

Proof. (1) To show completeness, let ¹unº be Cauchy sequence in QX . Then it is
a Cauchy sequence in X and un ! u in X . Thus un ! u in Lp

�

.�/ if p < n or
in L1.�/ if p > n and, up to a subsequence, un ! u a.e. on �. Since ¹unº is
bounded in QX , we have by Fatou’s lemmaZ

�

!�jujp dx � lim inf
Z
�

!�junj
p dx < Qc

and, thus, u 2 QX . Clearly, ¹.!�/
1
p unº is also Cauchy sequence in Lp.�/. Hence

there is some Qu with

.!�/
1
p un ! .!�/

1
p Qu in Lp.�/

and we get Qu D u a.e. on ¹!� > 0º. Consequently,G�.un � u/! 0 and un ! u

in QX . Therefore QX is complete. Uniform convexity follows as in Adams [1, p. 7f.],
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since QX can be considered as cross product of Lp-spaces (note that the weight
!� can be considered as the density of a measure on � and see Section A.4).
Consequently, QX is reflexive (cf. [23, p. 604]).

(2) We argue as in the proof of Lemma 3.3 with !� instead of ! to get the
directional derivative

G0�.uI v/ D

Z
�

!�jujp�2uv dx for all u; v 2 QX:

By Hölder’s inequality

jG0�.uI v/j �

Z
�

j!�j
p�1

p jujp�1j!�j
1
p jvj dx

�

�Z
�

!�jujp dx

�p�1
p
�Z

�

!�jvjp dx

� 1
p

� ckvk QX for all v 2 QX: (7.2)

Thus G0�.u/ exists as Gâteaux derivative. For a sequence un ! u in QX , which
we can assume to converge pointwise a.e. on �, we find vn 2 QX with kvnk QX D 1
such that

kG0�.un/ �G
0
�.u/k D hG

0
�.un/ �G

0
�.u/; vni

D

Z
�

!�
ˇ̌
junj

p�2un � juj
p�2u

ˇ̌
vn dx

D

Z
�

.!�/
p�1

p

ˇ̌
junj

p�2un � juj
p�2u

ˇ̌
.!�/

1
p jvnj dx

Hölder
�

�Z
�

!�
ˇ̌
junj

p�2un � juj
p�2u

ˇ̌ p
p�1 dx

�p�1
p

�

�Z
�

!�jvnj
p dx

� 1
p

: (7.3)

Since Z
�

!�jvnj
p dx � 1

and
!�
ˇ̌
junj

p�2un � juj
p�2u

ˇ̌ p
p�1 � !�.junj

p
C jujp/;

generalized dominated convergence and the subsequence principle imply

G0�.un/! G0�.u/

and, thus, the continuity of G0�. � / on QX .
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(3) For the directional derivative G0
C
.uI v/ we basically argue as in the proof of

Lemma 3.3. But we now use (WC) for the integrability of the right hand side in
(3.5). More precisely, we still use QX � L1.�/ if p > n and for p < n we apply
Young’s inequality to get

j!Cj jujp � cj!Cjn=p C cjujp
�

and j!Cj jvjp � cj!Cjn=p C cjvjp
�

: (7.4)

This way we obtain

G0C.uI v/ D

Z
�

!Cjujp�2uv dx for all u; v 2 QX:

As in (7.2) we get

jG0C.uI v/j �

�Z
�

!Cjujp dx

�p�1
p
�Z

�

!Cjvjp dx

� 1
p

:

For p > n we readily conclude

jG0C.uI v/j � k!
C
kL1kuk

p�1
L1 kvkL1 � c kvkX � c kvk QX for all v 2 QX:

If p < n, then

jG0C.uI v/j
Hölder
�

��Z
�

j!Cj
n
p dx

�p
n
�Z

�

jujp
�

dx

�n�p
n
�p�1

p

�

��Z
�

j!Cj
n
p dx

�p
n
�Z

�

jvjp
�

dx

�n�p
n
� 1

p

� c

�Z
�

jvjp
�

dx

� 1
p�

� ckvkX � ckvk QX for all v 2 QX: (7.5)

Thus G0
C
.u/ exists as Gâteaux derivative for any u 2 QX .

Let now un * u in QX . Then there are vn 2 QX with kvnk QX D 1 such that, as in
(7.3),

kG0C.un/ �G
0
C.u/k �

�Z
�

!C
ˇ̌
junj

p�2un � juj
p�2u

ˇ̌ p
p�1 dx

�p�1
p

�

�Z
�

!Cjvnj
p dx

� 1
p

:

(7.6)

As in the arguments above we obtain�Z
�

!Cjvnj
p dx

� 1
p

� c kvnk QX � c:
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For p > n we have un ! u in L1.�/ and we readily derive G0
C
.un/! G0

C
.u/.

Thus G0
C
. � / is completely continuous on QX in that case. For p < n we consider

Qun WD
ˇ̌
junj

p�2un � juj
p�2u

ˇ̌ p
p�1

and, by convexity, we have

j Qunj
n=.n�p/

�
�
junj

p�1
C jujp�1

� p�

p�1 � c
�
junj

p�
C jujp

��
:

Since QX ,! Lp
�

.�/, we conclude that ¹ Qunº is a bounded sequence in L
n

n�p .�/.
Thus, at least for a subsequence,ˇ̌

junj
p�2un � juj

p�2u
ˇ̌ p

p�1 *W Qu in L
n

n�p .�/ D L
n
p .�/0:

Since, up to a subsequence, un ! u a.e. on � (by un * u in QX ), we obtain
Qun ! 0 a.e. on�. Therefore Qun * 0 in L

n
n�p .�/. By !C 2 L

n
p .�/ and the sub-

sequence principle we derive from (7.6) thatG0
C
.un/! G0

C
.u/. Hence, G0

C
. � / is

completely continuous on QX also for p < n.

In order to apply some abstract theorem about critical points let us first introduce
some terminology. For a function F WM ! R on a metric space M we denote
the weak slope of F at u by jdF j.u/ D jdF jM .u/ and we call u 2M a critical
point of F if jdF j.u/ D 0. We say that F satisfies the Palais–Smale condition at
level 
 2 R if any sequence ¹unº inM with F.un/! 
 and jdF jM .un/! 0 has
a convergent subsequence un0 ! u in M . By genS we denote the Krasnoselkii
genus of a closed symmetric set S with 0 62 S given by

genS WD inf¹k 2 N j there is f W S ! Rk n ¹0º odd, continuousº

where inf; D 1 and gen; WD 0 (cf. [23, p. 319]).
We will apply Proposition A.5 to function E on the metric space K where the

metric is induced by QX (notice that Y D QX as sets). Let us still recall the estimate

jdEjK.u/ � min¹kE� � �G0.u/k j E� 2 @E.u/; � 2 Rº (7.7)

from Degiovanni & Schuricht [11, Theorem 3.5] which implies that critical points
satisfy a corresponding eigenvalue problem (7.1). We also use the condition

(A3) un * u in X , E�n 2 @E.un/, and hE�n ; un � ui ! 0 implies un ! u in X

to verify a Palais–Smale condition for E. Notice that (A3) is a nonsmooth version
of condition (S) that is typically used in critical point theory and that implies the
stronger conditions (S)0 and (S)1. In our case of a convex function E a nonsmooth
version of the weaker condition (S)C would be equivalent to (A3) by monotonicity
of @E. � / (cf. Zeidler [24, 27.1]).
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Proposition 7.2. Let (A), (A1a), (A1b), (A2), (A3), and (WC) be satisfied. Then:

(1) E satisfies the Palais–Smale condition on K at any level 
 2 R.

(2) supK E D1.

(3) sup¹gen.S/ j S � K compact, symmetricº D 1.

Let us discuss condition (A3) before we prove the proposition.

Remark 7.3. (1) Condition (A3) is satisfied if there is some c4 > 0 with

ha1�a2; q1�q2i � c4jq1�q2j
p for all qi 2 Rn; ai 2 @A.x; qi /; i D 1; 2:

(7.8)
This can readily be deduced from

hE�n�E
�; un�ui D

Z
�

han�a;Dun�Dui dx � c4

Z
�

jDun�Duj
p dx � 0

where an and a correspond to E�n and E�, respectively.

(2) If we replace (A3) in Proposition 7.2 with monotonicity condition (7.8), then
(A1b) can be omitted. To see that we first notice that q D 0 minimizes the
function A.x; � / by (A1a) and (A2) and, thus, 0 2 @A.x; 0/. With q2 D 0,
a2 D 0 in (7.8) condition (A1b) follows.

(3) In the case of the p-Laplace operator (i.e. A.x; q/ D jqjp) the monotonicity
condition (7.8) is satisfied for p � 2 but not for p < 2 (cf. Lindqvist [18, Lem-
ma 4.2]). Nevertheless (A3) can be shown directly for all p > 1 (cf. Szulkin
& Willem [22]).

Corollary 7.4. Let (A), (A1a), (A1b), (A2) be satisfied. Then

kukE WD E.u/
1
p D

�Z
�

A.x;Du/ dx

� 1
p

is an equivalent norm on X . If X is uniformly convex with norm k � kE , then (A3)
is satisfied.

Proof. First we notice that we can take ˇ D 0 in (A1a) by (A2). Then we readily
derive the equivalence of the norms k � kX and k � kE from (A1a) and (2.3).

Now let un * u be a sequence as in (A3). By convexity we have

E.u/ � lim inf
n!1

E.un/

and
hE�n ; un � ui � E.un/ �E.u/ for E�n 2 @E.un/:

Thus
lim sup
n!1

E.un/ � E.u/:
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Consequently, E.un/! E.u/, i.e. kunkE ! kukE . Hence kun � ukE ! 0 by
uniform convexity and, therefore, un ! u in X by the equivalence of norms. But
this implies condition (A3).

Proof of Proposition 7.2. (1) Let ¹unº 2 K be a sequence with E.un/! 
 and
jdEjK.un/! 0. Since @E.un/ ¤ ;, there are QE�n 2 @E.un/ and corresponding
measurable functions Qan with Qan.x/ 2 @A.x;Dun.x// a.e. on � given by Lem-
ma 3.1.

We have thatZ
�

jDunj
p dx

(A1b)
�

1

c2

Z
�

h Qan.x/;Dun.x/i dx

.2.2/
D

p

c2

Z
�

A.x;Dun.x// dx D
p

c2
E.un/: (7.9)

For p < n we getZ
�

!�junj
p dx C 1

un2K
D

Z
�

!Cjunj
p dx

Hölder
� k!Ckn=pkunk

p
p�

X,!Lp�

� c k!Ckn=pkDunk
p
p

.7.9/
� c k!Ckn=pE.un/: (7.10)

Analogously, with X ,! L1, we obtainZ
�

!�junj
p dx C 1 � c k!Ck1E.un/ for p > n.

Hence un is bounded in QX and, at least for a subsequence, un * u in QX and in X .
If 
 D 0, we get a contradiction in (7.10), since the most left term is positive, and
thus 
 > 0.

By (7.7) we find �n 2 R and E�n 2 @E.un/ with corresponding functions an
(notice that @E.un/ ¤ ; is weakly*-compact) such that

jdEj.un/ � min¹kE� � �G0.un/k j E� 2 @E.un/; � 2 Rº

D kE�n � �nG
0.un/k

�

ˇ̌̌̌�
E�n � �nG

0.un/;
un

kunk

�ˇ̌̌̌
(7.11)

D
1

kunk

ˇ̌̌̌Z
�

han;Duni dx � �np

Z
�

!junj
p dx

ˇ̌̌̌
.2.2/; un2K
D

p

kunk

ˇ̌̌̌Z
�

A.x;Dun/ dx � �n

ˇ̌̌̌
� c jE.un/ � �nj
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where, for the last estimate, we have used that the sequence ¹unº is bounded. From
jdEj.un/! 0 we derive that

�n ! 
 > 0:

Analogously to (7.11) we have that

kun � uk jdEj.un/ �
˝
E�n � �nG

0.un/; un � u
˛

D
˝
E�n � �nG

0
C.un/C �nG

0
�.un/; un � u

˛
:

Since G0
C

is completely continuous,

lim
n!1

�n
˝
G0C.un/; un � u

˛
D 0:

Choosing any E� 2 @E.u/ ¤ ;, we have˝
E�; un � u

˛
! 0:

Since ¹unº is bounded, we get in the limit

0 D lim
n!1

kun � uk jdEj.un/

� lim sup
n!1

˝
E�n �E

�; un � u
˛
C lim sup

n!1
�n
˝
G0�.un/; un � u

˛
:

The convexity of G� implies that

G�.u/ � lim inf
n!1

G�.un/ � lim sup
n!1

G�.un/

and
lim sup
n!1

˝
G0�.un/; un � u

˛
� lim sup

n!1
G�.un/ �G�.u/ � 0 :

By the convexity of E we have˝
E�n �E

�; un � u
˛
� 0:

Consequently
˝
E�n ; un � u

˛
! 0 and, by (A3), we get un ! u in X . Moreover,

lim
n!1

G�.un/ D G�.u/

by 
 > 0. We conclude that kunk QX ! kuk QX and, since QX is uniformly convex,
un ! u in QX . Thus the Palais–Smale condition is satisfied.

(2) Let y 2 � be a point of density 1 of ¹! > 0º and a Lebesgue point of !.
Then we can find 0 < r1 < r2 and a Lipschitz continuous function v0 supported on
Br2

.y/ with 0 � v0 � 1 and v0 D 1 on Br1
.y/ such that ˛ WD G.v0/ > 0. More-

over there is 0 < r0 < r1 such that ˛=2 � G.v0 C v/ � 2˛ for all Lipschitz con-
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tinuous v supported onBr0
.y/with 0 � v � 1. Obviously there are Lipschitz con-

tinuous functions vk supported on Br0
.y/ that are radially symmetric with respect

to y and that satisfy 0 � vk � 1 and jDvk.x/j � k a.e. on Br0
.y/ (take functions

that oscillate “radially”). For

Qvk WD
v0 C vk

G.v0 C vk/
1
p

we then get G. Qvk/ D 1 and there is some c > 0 with

E. Qvk/ D
E.v0 C vk/

G.v0 C vk/
D
E.v0/CE.vk/

G.v0 C vk/

�
1

2˛

�
E.v0/C

c2

p

Z
Br0

.y/

jDvkj
p dx

�
� c.E.v0/C k

p/: (7.12)

But this gives the assertion.
(3) For k 2 N let B1; : : : ; Bk � � be pairwise disjoint open balls centered at

y1; : : : ; yk , respectively, such that all yj are points of density 1 of ¹! > 0º and
Lebesgue points of !. Then we find vj 2 QX supported on Bj such that G.vj / D 1
for all j D 1; : : : ; k. Set Xk WD lin¹v1; : : : ; vkº for the linear hull of the vj and
consider the convex hull Ck WD conv¹˙v1; : : : ;˙vkº. Then

�k WD

´
kX

jD1

j̨ vj

ˇ̌̌̌
ˇ
kX

jD1

j j̨ j D 1; j̨ 2 R

µ

is the boundary of Ck withinXk . By the equivalence of norms in Rk there is c > 0
such that for v 2 �k

G.v/ D

Z
�

!

ˇ̌̌̌
ˇ
kX

jD1

j̨ vj

ˇ̌̌̌
ˇ
p

dx D

kX
jD1

j j̨ j
p

Z
�

!jvj j
p dx

D

kX
jD1

j j̨ j
p
� c

 
kX

jD1

j j̨ j

!p
D c > 0:

Thus v ! v=G.v/
1
p is an odd homeomorphism from �k to the normalized set

Q�k WD ¹ Qvj Qv D v=G.v/
1
p ; v 2 �kº � K

and we readily verify that gen Q�k D k (cf. [23, p. 320]).

In order to apply Proposition A.5 we still notice that Lemma 3.1 remains true
in QX . Combined with Proposition 7.1, Proposition 7.2, and (7.7) we obtain the
next result.
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Theorem 7.5. Let (A), (A1a), (A1b), (A2), (A3), (WC) be satisfied. Then for any
k 2 N there are critical points ˙uk 2 QX of E subject to K, and the ˙uk are
eigenfunctions of (7.1) with corresponding eigenvalues �k !1.

Remark 7.6. (1) If !� satisfies assumption .W C/ instead of !C and if we replace
! with �! in the previous theorem, then we obtain a sequence of eigenvalues
Q�k ! �1.

(2) Let us provide specific examples satisfying all the assumptions of Theo-
rem 7.5. In each of the examples below, the assumptions (A), (A1a), (A1b), and
(A2) can be checked easily (cf. also Section 2), and for (A3) we apply Corol-
lary 7.4.

Of course the theorem applies to the prototype examples A.x; q/ D jqjp for
1 < p <1 and covers previous results. More generally we can take

A.x; q/ D jqjps for 1 < s; p <1

(cf. Section A.4 for uniform convexity of the corresponding norm).
Nonsmooth examples satisfying all the assumptions of Theorem 7.5 are given,

e.g., by
A1.x; q/ D jqj

p
1 C jqj

p
s with 1 < s; p <1

and
A1.x; q/ D jqj

p
1 C jqj

p
s with 1 < s; p <1:

To see that we first notice that the norms

kuk1;p WD

�Z
�

jDuj
p
1 dx

�1=p
and kuk1;p WD

�Z
�

jDujp1 dx

�1=p
are equivalent to the uniformly convex norm

kuks;p WD

�Z
�

jDujps dx

�1=p
:

Then �
kuk

p
1 C kuk

p
s

�1=p
D

�Z
�

A1.x;Du/ dx

�1=p
and �

kukp1 C kuk
p
s

�1=p
D

�Z
�

A1.x;Du/ dx

�1=p
are also uniformly convex norms on X by Proposition A.8 in Section A.4 below
(cf. also Beauzamy [6, Exercise 3.II.1]). Hence, by Corollary 7.4, condition (A3)
is satisfied for A1 and A1.
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A Appendix

A.1 Tools from convex analysis

Here we collect some results of convex analysis specialized to our setting. Let
� � Rn be open and, for 1 < p <1, set X WD D1;p0 .�/, Z WD Lp.�;Rn/.
Moreover, let A W � �Rn ! R be such that A.x; � / is convex for all x 2 � and
that A. � ; q/ is (Lebesgue) measurable for all q 2 Rn. We assume that there are
c � 0, ˇ 2 L1.�/ with

jA.x; q/j � cjqjp C ˇ.x/ for all q 2 Rn; a.e. x 2 � (A.1)

and that there is Q̨ 2 Lp
0

.�;Rn/, Q̌ 2 L1.�/ with

A.q; x/ � h Q̨ .x/; qi C Q̌.x/ for all x 2 �; q 2 Rn: (A.2)

Notice that the last condition is trivially satisfied if A.q; x/ � 0 for all x 2 �,
q 2 Rn. Now we define

F.˛/ WD

Z
�

A.x; ˛.x// dx for ˛ 2 Z:

Lemma A.1. The function F W Z ! R is finite, convex, and continuous. Moreover

@F.˛/ D ¹a 2 Lp
0

.�;Rn/ j a.x/ 2 @A.x; ˛.x// for a.e. x 2 �º for all ˛ 2 Z

(@A denotes the subdifferential with respect to the second argument).

Proof. Note that F is finite by (A.1) and convex by the convexity of A.x; � /. Let
˛n ! ˛ in Z. Then, possibly for a subsequence, ˛n.x/! ˛.x/ a.e. on �. By
(A.1),

jA.x; ˛n.x//j � cj˛n.x/j
p
C ˇ.x/ for a.e. x 2 �:

Thus, F.˛n/! F.˛/ by generalized dominated convergence and continuity of
F is verified. The statement about the subdifferential is a direct consequence of
Barbu [4, Proposition 1.9] combined with (A.2).

Consider the continuous linear operator L W X ! Z with

Lu WD Du

and let L� W Z� ! X� denote its adjoint operator.

Lemma A.2. The function F ı L W X ! R is finite, convex, and continuous onX .
Furthermore

@.F ı L/.u/ D L�@F.Lu/ for all u 2 X:
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Proof. We readily verify that the function F is finite, convex and continuous onX .
The structure of the subdifferential follows from Ekeland & Temam [12, Proposi-
tion I.5.7].

Define E W X ! R with

E.u/ WD

Z
�

A.x;Du.x// dx:

Obviously,E.u/ D F.Lu/. ThusE is convex and continuous onX , and we obtain

Proposition A.3. Let E� 2 @E.u/. Then there is some a 2 Lp
0

.�;Rn/ such that

a.x/ 2 @A.x;Du.x// for a.e. x 2 �

and
hE�; vi D

Z
�

ha.x/;Dv.x/i dx for all v 2 X:

Proof. Use the previous results and observe that there is some F � 2 @F.Du/ such
that

hE�; vi D hL�F �; vi D hF �; Lvi for all v 2 X:

A.2 Existence of critical points

Many general results about the existence of critical points are based on the cat-
egory as topological index. However, for the verification of assumptions or for
subsequent arguments the genus as topological index appears to be more conve-
nient. Therefore we will provide some critical point result for our analysis based on
the genus where we use the notation introduced in Section 7. Let F WM ! R be
a function on the metric space M . For a closed set A �M we define the cat-
egory catMA of A within M to be the smallest number k 2 N of closed sets
A1; : : : ; Ak �M such that all Ai are contractible in M and A �

Sk
iD1Ai . In

particular, catMA D1 if there is no finite cover of that kind and catM; D 0. Let
us recall the following general result from Degiovanni & Marzocchi [10, Theo-
rem 3.10].

Proposition A.4. Let M be a weakly locally contractible complete metric space,
let F WM ! R be a continuous function that is bounded from below and that
satisfies the Palais–Smale condition at any level 
 2 R, and assume

sup¹catMA j A �M compactº D 1:

Then F has a sequence of critical points ¹ukºk2N in M with critical values


k D inf
A2Ak

max
u2A

F.u/
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where
Ak D ¹A �M j A compact, A ¤ ;; catMA � kº:

Moreover, 
k !1 if supM F D1.

For analyzing a special case we consider a Banach space Z and a function
E W Z ! R that is continuous and symmetric, i.e.E.�u/ D E.u/. We are looking
for critical points of E on the metric space

K WD ¹u 2 Z j G.u/ D 1º

where G W Z ! R is also assumed to be continuous and symmetric, i.e. we are
looking for u 2 K with vanishing weak slope jdEjK.u/ D 0. Moreover we as-
sume that there is some ˇ > 0 with

G.tu/ D tˇG.u/ for all t � 0: (A.3)

For a nontrivial application of the previous proposition to this situation we have
to work in the projective space identifying the antipodal points ¹u;�uº. Hence we
define

A� WD ¹¹v;�vº j v 2 Aº for any symmetric A � Z n ¹0º

(often also denoted asA=Z2) and we can considerE,G as functions on .Z n ¹0º/�

in a natural way. Proposition A.4 now provides critical points u� of E as function
on the spaceK� (endowed with the induced metric), i.e. jdEjK�.u�/ D 0. But we
are interested in critical points of E on K and we claim to formulate some exis-
tence result with conditions in terms of Z and K rather than K�. We first observe
that u and �u are critical points of E on K if the corresponding u� is a critical
point of E on K� (cf. Milbers & Schuricht [20]). Moreover we readily see that
E is continuous, bounded from below, and satisfies the Palais–Smale condition at
level 
 as function onK� if and only if these properties are satisfied forE as func-
tion on K and, clearly, supK E D supK� E. Let now Ak denote the sets defined
in Proposition A.4 with respect to the metric space K� and let us consider

Bk WD ¹A � K j A compact, symmetric,A ¤ ;; genA � kº:

In order to compare Ak and Bk we fix A� 2 Ak and let A be the corresponding
set in K. A simple normalization argument using (A.3) shows that

catK�A� D cat.Zn¹0º/�A
�

and from Rabinowitz [21, Theorem 3.7] we obtain that

cat.Zn¹0º/�A
�
D genA:



A class of degenerate elliptic eigenvalue problems 119

But this means that the sets Ak and Bk uniquely correspond to each other. Using
(A.3) we obtain that K and K� are always weakly locally contractible (i.e. any
point has a contractible neighborhood in K and K�, respectively). Hence Propo-
sition A.4 directly implies the following result.

Proposition A.5. Let Z be a real Banach space, let E;G W Z ! R be continuous
and symmetric, letG satisfy (A.3), and letK be the metric space as defined above.
Moreover, let E be bounded from below on K, let it satisfy the Palais–Smale con-
dition on K at any level 
 2 R, and let

sup¹genA j A � K compact, symmetricº D 1:

Then E has a sequence of critical points ¹ukº in K with critical values


k D inf
A2Bk

max
u2A

E.u/

where Bk is given as above. In addition, 
k !1 if supK E D1.

A.3 Capacity

Here we formulate in which way we use the notion of capacity and related notions
(cf. Heinonen et al. [15]). For � � Rn open, K � � compact, U � � open, and
E � � arbitrary we define the (variational) capacity

capp.K;�/ WD inf
²Z
�

jDujp dx

ˇ̌̌̌
' 2 C10 .�/; ' � 1 on K

³
;

capp.U;�/; WD sup¹capp.K;�/ j K � � compactº;

capp.E;�/; WD inf¹capp.U;�/ j U open with E � U � �º:

We say that E � Rn has capacity zero, written capp.E/ D 0, if

capp.E \ U;U / D 0 for all U � Rn open.

Otherwise we write capp.E/ > 0. A property holds quasi-everywhere (or q.e.) if
it holds except on a set of capacity zero.

In addition, for E � Rn we consider the Sobolev-capacity

Capp.E/ WD inf
²Z

Rn

jujp C jDujp dx

ˇ̌̌̌
u 2 W 1;p.Rn/;

u D 1 on some open U , E � U
³
:

We have Capp.E1/ � Capp.E2/ if E1 � E2 and

Capp

�[
k2N

Ek

�
�

X
k2N

CappEk for any E1; E2; : : : � Rn.
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Moreover, for E � Rn

Capp.E/ D 0 if and only if capp.E/ D 0

(cf. [15, Corollaries 2.37 and 2.39]). A function u W �! R [ ¹˙1º is said to be
quasi-continuous if for any " > 0 there is an open U with Capp.U / < " such that
u is finite and continuous on � n U .

For u 2 L1loc.R
n/ we define the precise representative u? by

u?.x/ WD

´
limr!0 1

jBr .x/j

R
Br .x/

f .y/ dy if the limit exists,

0 otherwise.

Proposition A.6 (Poincaré inequality). Let U � Rn be an open and bounded do-
main with Lipschitz boundary, let V � U with Capp.V / > 0 and 1 < p <1, and
set

Z WD ¹v 2 W 1;p.U / j v? D 0 on V º:

Then there is c > 0 such thatZ
U

jvjp dx � c

Z
U

jDvjp dx for all v 2 Z :

Proof. For contradiction let us assume that there are vk 2 Z with

kvkkW 1;p D 1;

Z
U

jvkj
p dx > k

Z
U

jDvkj
p dx for all k 2 N: (A.4)

Since vk is bounded in W 1;p.U /, we have (at least for a subsequence) that

vk
W 1;p

* v and vk
Lp

! v:

By (A.4), Z
U

jDvkj
p dx �

1

k

Z
U

jvkj
p dx �

1

k
! 0:

Hence vk ! v in W 1;p.U / with Dv D 0 a.e. on U . Thus v? is constant on U
with kvkW 1;p D 1 and, at least for a subsequence, vk ! v? a.e. on U . Clearly, v?

is quasi-continuous.
Using [15, Theorem 4.3] and vk 2Z, we find smoothwk 2W 1;p.U /\C1.U /

approximating vk and open Wk � U such that

kvk�wkkW 1;p <
1

k
; cappWk <




4k
; jwk.x/j <

1

k
on V nWk for all k 2 N

where 
 WD CappV > 0. Consequently, wk ! v inW 1;p.U /. Again by [15, The-
orem 4.3] there is some quasi-continuous Qv 2 W 1;p.U / such that, at least for
a subsequence,

wk ! Qv q.e. on U , wk ! v? a.e. on U and wk ! 0 on V nW (A.5)
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with W WD
S
k2N Wk . Obviously Qv D v? D v a.e. on U , i.e. Qv D v? D v within

W 1;p.U /. Since Qv and v? are both quasi-continuous, it follows that Qv D v? q.e.
on U by [15, Theorem 4.14]. By


 D CappV � Capp.V \W /C Capp.V nW / � Capp.W /C Capp.V nW /

and
CappW �

X
k2N

CappWk <



2

we obtain Capp.V nW / > 
=2. By (A.5) we get Qv D 0 q.e. on V nW and, hence,
v? D 0 q.e. on V nW . Since v? is constant on U , we conclude that v D v? is zero
inW 1;p.U /. But this contradicts kvkW 1;p D 1, which confirms the assertion.

Let us finally recall Proposition 2.1 from Kawohl et al. [16] where we include
the short proof for the convenience of the reader.

Proposition A.7. Let u W �! R be quasi-continuous and let

Zt WD ¹x 2 � j u.x/ D tº

be a level set. Then there are sets Fn � Zt closed in � such that

Capp

�
Zt n

[
n2N

Fn

�
D 0: (A.6)

Proof. Since u is quasi-continuous, for any n 2 N there is an open Un such that
CappUn �

1
n

and u continuous on � n Un, which is closed in �. Hence the set
Fn WD Zt \ .� n Un/ is also closed in � and

Capp

�
Zt n

[
n2N

Fn

�
� Capp.Zt n Fn/

D Capp.Zt \ Un/ �
1

n
for all n 2 N:

But this implies (A.6).

A.4 Uniform convexity

Let us recall that a Banach space X with norm k � k is uniformly convex if for any
" > 0 there is some ı > 0 such that, for u; v 2 X ,

kuk D kvk D 1; ku � vk � " implies that
kuC vk

2
� 1 � ı:
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Note that Sobolev spaces such as W 1;p
0 .�/ and D1;p0 .�/ equipped with the stan-

dard norm .
R
� jDuj

p
p dx/

1=p are uniformly convex for 1 < p <1 (cf. Adams
[1, p. 7f.]). Clearly

kDuks;p WD

�Z
�

jDujps dx

�1=p
are equivalent norms on these spaces for 1 � s � 1. Moreover these norms are
also uniformly convex for 1 < s <1 (cf. Fan & Guan [14, Theorem 2.4] with
A.�/ D '.j�js/ and '.t/ D jt jp).

We now provide some result for the construction of further uniformly convex
norms (cf. also Beauzamy [6] where this is stated as Exercise 3.II.1 without proof).
This will allow the construction of nonsmooth examples for A satisfying condi-
tion (A3) (cf. Remark 7.6 (2)).

Proposition A.8. Let X be a Banach space that is uniformly convex with norm
k � k and let k � k� be a further norm on X such that

kuk� � ckuk for all u 2 X

with some c > 0. Then

kuk0 WD
�
kukp C kuk

p
�

�1=p with 1 < p <1

is an equivalent norm on X that is also uniformly convex.

Proof. Let us fix p 2 .1;1/. Then a norm k � kÏ is uniformly convex on X if and
only if for any " > 0 there is some ı > 0 such that any u; v 2 X with

kukÏ � 1; kvkÏ � 1; ku � vkÏ � "

satisfy 



uC v2






Ï

� .1 � ı/
kukpÏ C kvk

p
Ï

2

(cf. Beauzamy [6]).
For verifying this condition we consider u; v 2 X satisfying

kuk0 � 1; kvk0 � 1; ku � vk0 � "

and we fix " > 0. Then

"p � ku � vk
p
� C ku � vk

p
� .cp C 1/ku � vkp

Now we take Q" > 0 such that Q"p WD "p

cpC1
and, for the norm k � kÏ D k � k, we

choose the corresponding ı.Q"/ according to the condition for uniform convexity
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stated above. Then, also using convexity of k � k�, we obtain



uC v2




p
0

D





uC v2




p
�

C





uC v2




p

�

�
kuk� C kvk�

2

�p
C .1 � ı.Q"//

kukp C kvkp

2

�
kuk

p
� C kvk

p
�

2
C
kukp C kvkp

2

� ı.Q"/

�
kukp C kvkp

4
C
kukp C kvkp

4

�
�
kuk

p
0 C kvk

p
0

2
�
ı.Q"/

2c

kuk
p
� C kvk

p
�

2
�
ı.Q"/

2

kukp C kvkp

2

� .1 � ı0."//
kuk

p
0 C kvk

p
0

2
(A.7)

where

ı0."/ WD min
²
ı.Q"/

2c
;
ı.Q"/

2

³
:

But this implies the uniform convexity of k � k0. The equivalence of k � k0 to k � k
follows easily.
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