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A class of degenerate elliptic eigenvalue problems

Marcello Lucia and Friedemann Schuricht

Abstract. We consider a general class of eigenvalue problems where the leading ellip-
tic term corresponds to a convex homogeneous energy function that is not necessarily
differentiable. We derive a strong maximum principle and show uniqueness of the first
eigenfunction. Moreover we prove the existence of a sequence of eigensolutions by using
a critical point theory in metric spaces. Our results extend the eigenvalue problem of the
p-Laplace operator to a much more general setting.
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1 Introduction

The classical eigenvalue problem —Au = Au and some of its nonlinear extensions
involving the p-Laplace operator div |Du|?~2Du have in common that they are
related to a variational problem where a convex coercive function E as, e.g.,

/ |Dul? dx, 1< p < oo,
Q

corresponds to the leading elliptic term in the partial differential equation. The
usual techniques for deriving typical properties of elliptic problems like maximum
principle, uniqueness of the solution, or the existence of a sequence of eigenso-
lutions are known to work for problems where the corresponding function E has
certain differentiability properties. However the inherent property of ellipticity is
rather convexity than smoothness of E. In this paper we want to demonstrate for
a general class of eigenvalue problems that, by extending and supplementing the
standard techniques, we can derive the typical properties also for elliptic problems
where the leading term corresponds to a function E that is convex but lacks the
usual smoothness assumptions.
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More precisely, we consider the constrained variational problem
E(u) = / A(x, Du) dx — Min!
Q

subjected to
G(u) := / wlul?dx =1
Q

where 2 C R” might be unbounded, w is allowed to change sign, and A(x,-) is
assumed to be convex but not necessarily differentiable. This kind of problem has
been studied by Szulkin & Willem [22] for the special case of A(x, Du) = |Du|?
with 1 < p < oo which corresponds to the nonlinear eigenvalue problem

—div |Du|?"2Du = Aw|u|?"2u.
In our more general case we are led to the eigenvalue problem
—diva = pAw|u|?u

where a is coupled to u by a(x) € dA(x, Du(x)) a.e. on Q with dA denoting
the convex subdifferential of A(x,-). Assuming some p-growth on A(x,-) we
show that the minimizer u of the variational problem, that exists in a suitable
space, is a weak solution of this eigenvalue problem with homogeneous boundary
conditions and that it is unique (up to sign). For the verification of uniqueness,
we extend to our framework a strong maximum principle due to Ancona [2] and
Brezis & Ponce [8]. Finally we show the existence of a sequence {uy } of eigen-
functions with corresponding eigenvalues A — oo. If w changes sign, our argu-
ments also apply to —® and provide a sequence of eigenfunctions with eigenvalues
A — —o0.

The leading term in our general eigenvalue problems is not only of analytical
interest but also of practical relevance, since it describes, e.g., anisotropic diffu-
sion and heat flux. Recall that the simplest model for diffusion is based on Fick’s
law where the flux j has the form —B - Du. Here B is the diffusion tensor and
we are led to the term —div(B - Du) in a corresponding differential equation.
Note that, for general B, the flux j has not to be parallel to Du, i.e. some kind
of anisotropic diffusion is covered. Basic nonlinear models (e.g. Perona-Malik)
assume that j = B(|Du|)Du for a scalar function §. While this describes an
isotropic situation, the use of an anisotropic norm | Du|s as argument of B leads
to an anisotropic model. Combining the idea that the flux has not to be parallel
to Du and that the intensity of diffusion might depend on some magnitude of
Du through a function B(-), we are readily led to models where the flux has the
form j = A’(Du) with a convex function 4 : R” — R. Simple examples would
be given, e.g., by A(Du) = |Du |g, that is anisotropic for ¢ # 2. In the limit cases
q = 1 or g = o0, the function A(-) is not differentiable anymore and we can re-
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place the diffusion law by j € dA(Du) (where d denotes the convex subdifferen-
tial). This way one can describe diffusion in structured materials where diffusion
takes place only in special preferred directions and where the flux direction might
jump at certain directions of Du. Notice that the theory we are presenting covers
such general diffusion laws.

The precise formulation of the problem and explicit nonsmooth examples for
function A are provided in Section 2. Some preliminary material about the (sub-)
differentiability of underlying functions is collected in Section 3. In Section 4 we
state the existence of a minimizer of the constrained variational problem and we
show that it is a weak solution of the corresponding eigenvalue problem. Here we
use a general result from convex analysis that is derived in Section A.1. Section 5
is devoted to the strong maximum principle for non-negative weak solutions of the
eigenvalue problem. Here we apply some results about capacity and a Poincaré
inequality that are summarized in Section A.3. The uniqueness of the first eigen-
function is shown in Section 6 by using that maximum principle. Section 7 verifies
the existence of a sequence of eigensolutions on the basis of a critical point theo-
rem, derived in Section A.2, that is a modified version of a general result due to
Degiovanni & Marzocchi [10].

Notation. The closure of a set A is denoted by A. We write B, (u) for the open
ball of radius r centered at u. For a Banach space X, its dual is X™* and (u™, u)
stands for the duality pairing. In particular, (-, -) is the scalar product in R”. By
sgna we denote the sign of @ € R and

{sgna} ifa #0,

Sgno = }
[-1,1] ifa=0,

is the set-valued sign function. For u : 2 — R we define
{u>0}:={x € Qu(x)>0}

and, analogously, {# = 0} etc. Moreover, u™ and u™ are the positive and negative
part of u, respectively, such that ¥ = u™ — u~. The subdifferential of a convex
function F at u is denoted by dF () and F’(u; v) stands for the one-sided direc-
tional derivative of F* at u in direction v. We write | - |, for the p-norm in R" and
we set |- | := |- |2. In several estimates ¢ > 0 is a generic positive constant that
can differ from one equation or inequality to the next one. Denote by L?(2) the
usual Lebesgue space of p-integrable functions, L? () its dual, and W17 ()
the Sobolev space of p-integrable functions having p-integrable weak derivatives.
Then LﬁC(Q) and Wlic’p (R2) are the spaces of functions where any restriction to
a compact subset belongs to the corresponding spaces. We write a.e. for “almost
everywhere” and g.e. for “quasi everywhere” (cf. Section A.3).
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2 Problem

For Q C R” open, 1 < p < oo, let Dé’p(Q) be the completion of C§*(£2) with

respect to the norm
1/p
|Du|pr := (/ |Dul|? dx)
Q

where we exclude p > n if Q2 is unbounded (since the elements of Dé’p (£2) cannot
be identified with a function in Llloc(Q) in that case). Notice that

« DyP(R) C WLP(Q),
« DYP(Q) = Wy P (Q) if Q is bounded,
« Wy'P(Q) S Dy? () if Q is unbounded.

Since Dé’p (£2) can be considered as a closed subspace of a cross product L? (£2)",
it is uniformly convex and, thus, also reflexive (cf. Adams [1, p. 7f.] and Sec-
tion A.4). Moreover,

. Dé’p(Q) < LP*(Q) continuously for p* = % if p <n (follows from
the Gagliardo—Nirenberg—Sobolev inequality),

« D™ (Q) < LP(Q) is compactif 1 < j < oo,
. Dl’p(Q) — L°°(Q) is compact if p > n.

If © is bounded, then D ’p(Q) — L9(Q) is compact forall 1 < g < p*. Notice
that any weakly convergent sequence u, — u in D, L-p (£2) has a subsequence con-
verging pointwise a.e. on €2 (for 2 bounded this follows from the compact embed-
ding Dy*? () < L'(2) and for  unbounded we can consider a sequence B, of
balls covering Q and then we use the compact embedding W -?(B,,) — L(B,)
and stepwise select subsequences).

Henceforth we set X := Dé’p (£2), and for a weight function w € LIIOC(Q) with
o™ # 0 we define

Y:={ueX‘/ |a)||u|pdx<oo}
Q

/ o |ul? dx > O}.
Q

We want to consider the minimization problem

A:= inf M 2.1)
ueyt+ ‘[Qw |u|pdx

and
Yyt .= {u ey
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and, first, let us formulate basic assumptions we want to use.

(A) A: Q xR" — R with A(x,-) convex for all x € Q, and A(-, g) measur-
able for all ¢ € R”. (Notice that A(x,-) is continuous for all x € 2, and
that the subdifferential dA(x, g) of A(x,-) at g is nonempty for all x € €,
q € R")

(A1) There are c1, ¢2, c3 > 0, B € L1 () such that for a.e. x € Q
(@) 0 < A(x,q) <c1lq|? + B(x) forall ¢ € R",
(b) {a,q) > ca2|q|? foralla € dA(x,q), q € R”",
() la| < c3|q|P~! foralla € dA(x,q), q € R".
(A2) A(x,tq) = |t|PA(x,q) forallt e R, x € Q,q € R".
(W) p #n, " # 0 and furthermore
o« if p <n,thenwt € L"P(Q),
o if p>n,thenw™ € L1(Q) and Q bounded.
Let us start with some simple consequences of theses assumptions. From (A),
(A2) we get
{(a,q) = pA(x,q) forallg € R", a € 0A(x,q) (2.2)

by evaluating A(x,tq) — A(x,q) > (a,tq —q) for t — 1. Consequently, if we
assume (A), (A2), then (A1b) implies

c2|ql? < pA(x,q) forallx € 2, g € R”, (2.3)
and (Alc) implies
pA(x,q) <c3lg|? forallx € Q, g € R".

Hence (A), (Alb), (Alc), (A2) imply (Ala).

Let us mention that we work with condition (W) for the sake of simplicity. It
can be relaxed by working in some Lorentz spaces as in [3]. Our main intention is
to focus on techniques necessary in the absence of differentiability in the elliptic
term. While it is standard to treat that kind of problem for integrands A where
A(x,-) is smooth, here we want to demonstrate that smoothness is not needed.

Examples. Let us first provide some simple examples of A4 satisfying all of our
assumptions stated above but without being smooth. First we consider

n V4
Ai(q) = (Zlq;l) =|q|7 forallg =(q1,....qn) € R".

J=1
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Obviously, the functions fj(q) := |g;|, j = 1,...,n, are convex on R" with the
subdifferential

afj(q) =1(0,...,0,9;,0,...,0) € R" | ¢; € Sgn(g;)}.

For f(q) := Y__; |q;| the sum rule implies that

df (q) = Sgn(q1) x --- x Sgn(gn).

Since g(¢) := |t|? is continuously differentiable on R for p > 1, we can apply the
chain rule of Clarke [9, Theorem 2.3.9] to get

n p—1
041(q) = p(Z Iqjl) (Sen(q1) x --- x Sgn(gy)) forallg € R".
J=1

Using the equivalence of norms on R” and (2.2) we readily verify (Ala)-(Alc)
for A;. Analogously we can argue for

geeey

p
@)= max lgjl)" =gl forallg =(g1.....qu) € R"

where

p .
942(q) = p(}_:rqax |Qj|) conv{Sgn(q,)e; | lgj| = A2(q). j = 1.....n}
with eq, ..., e, being the standard unit vectors in R”. While A; and A, are not
strictly convex, we can easily construct strictly convex nonsmooth functions A by,
e.g.,

A3(q) == (Iql1 +1ql2)? forallg = (q1,...,qn) € R™.

3 Preliminary considerations

Before we formulate some general existence result and derive further properties of
a minimizer, let us start with some preliminary considerations.
With A as in (2.1), problem (2.1) is equivalent to

F(u) :=/ A(x,Du)dx—/\/ o|ul?dx — Min!, ueYT, 3.1
Q Q
where infy+ F = 0. By (A2) we readily see that any tu with 7 € R solves (2.1)

aslong as it € Y is a solution. Therefore attention can be restricted to minimizer
normalized by [  [u|? dx = 1 and, in this sense, (2.1) is also equivalent to the
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constraint problem
E(u) := / A(x, Du)dx — Min!, ueY™T, (3.2)
Q

subject to
G(u) = / o |ul dx = 1. (3.3)
Q

Later we also use the notation
L + P
Gi(u) = / o™ |ul?P dx.
Q

Lemma 3.1. Let (A), (Ala) be satisfied. Then:

(1) E is convex and continuous on X and, thus, also locally Lipschitz continuous
on X.

(2) The (one-sided) directional derivative E'(u;v) exists for all u,v € X.

(3) We have 0E(u) # @ for all u € X and for any E* € 0E (u) there is some
a € LP' (2, R") with

a(x) € dA(x, Du(x)) fora.e x € Q
such that

(E*,v) = /Q(a(x),Dv(x))dx forallv € X.

Proof. Letvy, vy € X. Then, using convexity of A(x,-),

E(v1+v2) =/ A(x, Dvl(x)+DU2(x))dx
2 o 2

- / A(x, Dvi(x)) + A(x, Dva(x)) dx — E(y) + E(v2)
Ja

2 2

and, thus, £ is convex.
Let now v, — v in X. Thus Dv, — Dv in L?(2) and, possibly for a subse-
quence, Dv,(x) — Dv(x) a.e. on Q2 and

A(x, Dvy(x)) = A(x, Dv(x)) forae. x € Q.
By (Ala),
|[A(x, Dvy(x))| < c1|Dvg(x)]? + B(x) forae. x € Q.

With generalized dominated convergence we get E (v,,) — E(v). The subsequence
principle then implies continuity of E. By convexity, E is even locally Lipschitz
continuous on X (cf. [9, p. 34]).
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Since E is convex and (locally Lipschitz) continuous on X, the existence of a
finite one-sided directional derivative E i (u;v) forall u, v € X is a standard result
of convex analysis and, moreover, dE (1) # @ for all u € X (cf. Barbu & Precu-
panu [5, Chapter 2.1]). The structure assertion about E* is a direct consequence
of Proposition A.3 in the Appendix. |

Lemma 3.2. We have:
(1) Y is a linear subspace in X.

(2) Letu € YT and v € Y. Then there is to > 0 such that u +tv € Y for all
lt] < to.

Proof. Letui,u € Y. Obviously tu; € Y forall t € R. Moreover, by convexity
there is some ¢ > 0 with

/ |w||u1+u2|pdx56/ o] (a]? + fua|?) dx
Q Q

which implies the first assertion. For the second assertion we use the analogous
estimate that

lw ()] |u(x) +1v(x)|? < clo@)|(Ju(x)]|? +[t]P|v(x)|?) forallt € R, x € Q,
and that

tlin})a)(x) [u(x) + tv(x)|? = w(x) |u(x)|? forall x € Q.

—

Thus, by dominated convergence,

lim a)|u—|—tv|pdx=/ o |ul? dx >0
t—>0 Jq Q
which readily implies (2). |

Lemma 3.3. We have that G : Y — R is well-defined and the directional deriva-
tive G'(u; v) is given by

G'(u;v) = p/ olulP2uvdx forallue Yt veV. (3.4)
Q
If in addition (W) is satisfied, then
Gi(u) = / oTu?dx <oo forallu e X
Q

and G+ is weakly continuous on X (i.e. v, — v implies G+ (v,) — G4+ (v)).
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Proof. The definition of Y directly implies that G is well-defined on Y. Now, let
u €Yt veY befixed. Then, for |¢| small, u + tv € ¥ and

G(u + tv) :/ o |u+tv|? dx
Q

is finite. For ¢ (x,1) := w(x) |u(x) + tv(x)|? we have
Vi(x,t) = pwlu 4+ tv|P"2(u + tv)v forae. x € Qandallr € R.
Hence, using Young’s inequality and convexity,
Ly eon)] = ol 7 Ju+ r0]P || 7|
< 2ol it oo + ol o)

<cp_1

1
o] (Ju]? +[v|7) + > o] [v|? (3.5)
for a.e. x € Q and all |¢] < 1. Since the right hand side is integrable, we obtain
(cf. Zeidler [24, p. 1018])

G(u +tv) — G(u)
t

G'(u;v) = lim
t—0

Z/ Ye(x,0)dx =p/ wlu?2uv dx.
Q Q

Let us now verify that G 4 is weakly continuous. The arguments are well known,
and we give it here for the sake of completeness. We first consider p < n. Let
u, — u in X, and let £ > 0. On the one hand, the fact that u, is bounded in
LP"(Q) together with Holder inequality imply the existence of a ball B such that

/ w+||u,,|p—|u|p|dx <. (3.6)
Q\B

On the other hand, since |u,|? is bounded in L?*/?(Q N B) and |un|? — |u|?
strongly in L1 (), we easily deduce that |uy,|? — |u|? in LP?"/P(QN B). There-
fore, since w™ is in the dual of L?"/?($2), we deduce

lim ot ([un|? — [u|?) dx = 0. (3.7)

From (3.6) and (3.7) we deduce G 4+ (u,) — G4 (u).
For p > n we recall that €2 is bounded and that the embedding

DyP(Q) = L®(Q)

is compact. This readily implies the assertion. o
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4 Existence and Euler-Lagrange equation

Let us first verify the existence of a solution to the minimizing problem (2.1).

Theorem 4.1. Let (A), (A1b), (A2), (W) be satisfied. Then (2.1) has a minimizer
inY™.

Proof. We verify the existence of a solution of (3.2), (3.3). For that we consider a
minimizing sequence {u,} C Y . By (2.3) it is bounded in X and, thus, we may
assume thatu,, —: u € X. Since E is convex and continuous on X by Lemma 3.1,
it is weakly lower semicontinuous and E(u) < liminf,— s E(uy). Since G4 is
weakly continuous on X by Lemma 3.3, Fatou’s lemma implies that

Gi(u) = lim Gy(up) = lim G_(up) +1>G_(u) + 1.
n—oo n—oo
Hence u € Y+ with G(u) > 1,i.e.u € Y 7. By (A2) we conclude that u has to be
a minimizer. o

We now assume that i € Y is a solution of (2.1) or, equivalently, of (3.1) and
we claim to derive a necessary condition for it.

Lemma 4.2. Let (A), (Ala) be satisfied. Then the solution u of (3.1) satisfies
E'(ii;v) — AG'(t;v) >0 forallv €Y. 4.1)
Moreover; there is E* € 0E (ii) such that
(E*,v) = AG'(u;v) =0 forallv €Y.

Proof. Fix any v € Y. Since it € Y+, we know from Lemma 3.2 that there is
to > O such that it + tv € Y+ for all |¢| < to. Hence all i + tv with |¢| small are
admissible for the variational problem (3.1) and

Fu+tv)— F(u) >0 forall |f| < tg.

By the existence of the directional derivatives according to Lemmas 3.1 and 3.3
we readily obtain (4.1).
Since E is locally Lipschitz continuous on X according to Lemma 3.1, there is
¢ > 0 such that
E'(i;v) < ¢|lv|| forallv € X.

Thus, by (4.1),

AG'(u;v) < E'(1;v) < ¢ |v| forallv €Y.
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Consequently, G'(#; - ) is linear and continuous on Y. Since E’(i; ) is sublinear
on X, the Hahn—Banach Theorem provides the existence of some E* € X* with

(E*,v) = AG'(i;v) forallv €Y, (4.2)
(E*,v) < E'(u;v) forallv € X. (4.3)

Since E is continuous at i, the last inequality implies that E* € dE (i) (cf. Barbu
[4, Proposition 1.1.6]) and the assertion is a consequence of (4.2). O

As a direct consequence of Lemma 3.1, Lemma 3.3 and Lemma 4.2 we obtain
the following theorem where we use the decomposition @ = @™ — w™ for the last
inequality.

Theorem 4.3. Let (A), (Ala) be satisfied and let u be a solution of (3.1). Then
there is a € LP' (2, R™) with

a(x) € 0A(x,u(x)) forae x € Q 4.4)

such that

/Q(a(x), Dv(x))dx — pk/ﬂw|ﬁ|p_2ﬁv dx =0 forallveY. 4.5)
Moreover, if u > 0 a.e. on , then

/Q(a(x),Dv(x))dx + p)L/Qa)_|ﬁ|p_2ﬁv dx >0
forallv € C§°(2) withv > 0.
Notice that (4.5) can be written, in the distributional sense, as
—diva = pAwl|i|’ %1 onQ

where a is coupled to # by (4.4). In the special case of A(x,q) = |¢|?, that meets
all of our assumptions, we recover the (nonlinear) eigenvalue problem for the p-
Laplace operator.

S5 Strong maximum principle

Let us state the strong maximum principle for the type of problems we have con-
sidered before where we follow ideas of Brezis & Ponce, cf. [8]. The notion of
capacity as used here is precisely formulated in Section A.3 below.
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Proposition 5.1. Let @ C R” be a domain and assume that A : Q x R" — R and
w € LL () satisfy (A), (A1b) and (Alc). Moreover letu € W27 () withu > 0

loc
a.e. on 2 be quasi-continuous and let it satisfy

/Q(a(x),Dv(x))dx + p)L/Qa)_|u|p_2uv dx >0 (5.1)
forallv € C§°(2) withv > 0 for some measurable selection
a(x) € 0A(x, Du(x)) fora.e. x € Q.
Then, denoting the set of zeros by
Z:={x € Q| ux) =0}, (5.2)
we have that either cap,(Z) = 0 oru = 0.

Remark 5.2. (1) Let us mention that the result is not true in the case p = 1 where
typical solutions of the eigenvalue problem of the 1-Laplace operator vanish
on a set with positive Lebesgue measure (cf. Kawohl & Schuricht [17]).

(2) Notice that in the case p > n, where we only consider bounded €2, the capacity
cap,({x}) > 0 for any x € Q. Therefore, either Z = @ oru = 0.

Proof. We need to show thatu = 0if cap, (Z) > 0. We borrow here the arguments
found in [8], and the main idea is to prove that for any § € C§°(2) with0 < £ <1
there is a constant co := co(§) > 0 such that

/ Dlog(l + E)
Q )

To derive (5.3) we proceed as follows:

u
/ Dlog(l + —)
Q )

:[ | Dul?(u + 8)~P €7 dx
Q

p
EPdx <co forall§ > 0. (5.3)

p
&P dx

<L / (a(x). DuYu +8)P P dx  (by (AIb))
2 JQ

:_; 1=py &p
p— /Q(a(x), Du+6) "P)EPdx

B 1 £p DEP
= a1 /Q<“(x)’ D((u T 8),,_1) e 8)p—1>dx‘
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Note that the differential inequality (5.1) with v = £7/(u + §)?~! and a density
argument (since v ¢ C5°(£2) in general) shows that

—/<a(x) D(L»dx < pA/ a)—(x)|u|P—1de (5.4)
Q ’ (u + 5)1’_1 - Q (u + 8)17—1 ' ’

From (5.4) and the assumption (Alc), we then obtain

ca(p — 1)/Q‘Dlog(l + %)

P D pr—1
fpk/gw_(x)|u|p_1$—dx+c‘3/9(| u|) |DEP | dx

p
EP dx

(u + §)P~1 u+36
= p/\/ w_(x)|u|p_1—gp dx
Q (u + 8§)P1
I
u\ P!
+63p/ ‘Dlog(l + E) P~V |DE|dx . (5.5)
Q
I>
To estimate /1, we note that 0 < ulils < I and get
I < p/\/ w EP dx. (5.6)
Q
Let us now estimate /5. By using the inequality ab < 8'“7r + % (% + % =1,
&> 0)withr = ﬁ, s = p, we can find a constant ¢ = ¢(§) such that

p—1 u\|? -
I <cy / Dlog(1+ )| &€7dx +c. (5.7
7 5

Hence, by plugging estimates (5.6) and (5.7) in (5.5), we get

p—1 u
Dlog( 1+ -
7 /g Og( +5)

Therefore, given § € C§°(2), we can find a constant cg = co(§) such that (5.3)
holds.

To proceed with the proof of Proposition 5.1, let us first notice that the set of
zeros of the function x +— log(1 + @) coincides with Z for any § > 0. More-
over, by modifying u on a set of capacity zero, we may assume that Z is a Borel
set (cf. Proposition A.7).

p
EPdx < pk/ w EPdx +¢.
Q
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Now let the set Z have positive capacity, i.e. cap,Z > 0. We can find open balls
Bi CC @, k € N, such that
U Be =2

keN

Then
0 < Cap,Z < Y Cap,(Z N By).
keN

Clearly there is some j € N such that Cap,(Z N Bj) > 0. Let us now choose any
domain U CC Q with B; C U and with Lipschitz boundary 0U. We consider
§eCg°(Q2) with0<§ <1and § =1 on U. Then we can apply the Poincaré
inequality stated in Proposition A.6 to the functions log(1 + %) (note that u equals
its precise representative u* g.e., since it is quasi-continuous, cf. Section A.3). Still
using (5.3), we find a constant ¢ := ¢(U) such that

ie3)

Since § is arbitrary, the above uniform bound implies that u = 0 a.e. in U. Since
U can be chosen arbitrarily, we deduce that u = 0 a.e. in 2 as claimed. O

P
dx <c¢ forallé > 0.

6 Uniqueness

Proposition 6.1. Let (A), (Ala) be satisfied, let A(x,0) = 0, and let
ueYt c DY (Q)

be a minimizer of (2.1). Then either u™ or u™ is also a minimizer.

Proof. Recall that Du™ = Du a.e. on {u* > 0} and Du = 0 a.e. on {u = 0} (cf.

[13, p. 130]). Since a minimizer satisfies (4.5) with v = ut,

/ (a, DuT)dx = A/ wlu®|? dx.

Q Q

By convexity of A(x,-),

—A(x,q) = A(x,0)—A(x,q) > a-(—q) forallx € Q,q € R", a € 0A(x, q).

Using a(x) € dA(x, Du(x)) = 0A(x, Du*(x)) a.e. on {u™ > 0}, we get

1
/ oluT|P dx > —/ A(x, DuT)dx > 0.
Q Ao
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Consequently,
. Joq A(x, Du) dx _ Jo A(x, Dutydx + [o A(x, Du™) dx
Jo @|ulP dx Joq wlul? dx
_ Jo Ax, Dut)dx [qolut|Pdx [ A(x,Du~)dx [owlu™|P dx
JooluT|Pdx  [qolulPdx Joolu=Pdx  [qwlu|?Pdx

Jo Ax. Dutydx [ A(x, Du~)dx
Joolut|Pdx ~ [qoluT|Pdx |

> min

6.1)

Thus either 1 or u™ has to be a minimizer. o

Proposition 6.2. Let 2 C R” be a domain, let (A), (Ala)—(Alc) be satisfied, let
A(x,0)=0forall x € Q, andletu e Y+ C Dé’p(Q) be a minimizer of (2.1).
Then either u > 0 oru < 0 g.e. on S2.

Proof. According to the previous proposition let, without loss of generality, u™
be also minimizer. Since u™ # 0, the strong maximum principle implies that

Capp{u+ =0}=0
and, thus, ut > 0 g.e. on 2. But this implies the assertion. O

Proposition 6.3. Let (A), (A2) be satisfied and letu,v € YT C D(l)’p () be min-
imizers of (2.1) satisfying u > 0, v > 0 g.e. on Q and being normalized by

/a)updx=/a)vpdx=1.
Q Q

[ uP +P Gz
V= (T)

is also a minimizer of (2.1) with

/a)wpdxz 1.
Q

In addition, let A(x,-) be strictly convex for all x € Q. Then

Then

vDu =uDv gq.e. on . (6.2)

Proof. Here we follow some arguments from Belloni & Kawohl [7]. We readily
see that v is normalized and we show that it is a minimizer. Obviously

1 u?1Du 4+ vP 1Dy

1 1—1
27 (uP +vP) " r

Dy =
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Thus, using convexity and homogeneity of A(x,-),

D D D D p D
A(X,D]//): w tv A X, u _u U—_U
2 u? +v?P u u? +v?P v

PP P D P D
LUty a2 a2 63)
2 uP 4+ v? u uP + vP v

= %(A(x,Du) + A(x, Dv)).

By integrating over 2 we see that ¥ is a minimizer and we must have equality
in (6.3) a.e. on 2. But, under the additional assumption of strict convexity, this
implies the final assertion. |

As shown in [19], condition (6.2) implies the final uniqueness statement.

Proposition 6.4. Let Q C R” be a domain, let (A), (Ala)—(Alc), (A2) be satisfied,
and let A(x,-) be strictly convex. If (2.1) admits a minimizeru € Y+ C D(l)’p (),
then u is unique in the sense that any minimizer has to be a multiple of u.

7 Higher eigenvalues

A minimizer u € Y of (2.1) satisfies the eigenvalue equation (4.5), i.e. there is
some function a € L? (2, R") with

a(x) € 0A(x,u(x)) forae. x € Q

such that
/ (a(x), Dv(x))dx — pk/ wlulP2uvdx =0 forallv €Y. (7.1)
Q Q

Let us now look for higher eigensolutions, i.e. let us verify the existence of a
sequence of solutions u, of (7.1) with corresponding eigenvalues A,, — oo. For
that we are looking for critical points of E subject to the constraint

K:={ueY|Gu)=1}.

Notice that the special case of the p-Laplace operator has been treated by Szulkin
& Willem [22]. In our more general setting we are confronted with the difficulty
that £ may not be differentiable. Thus we cannot define critical points u in the
classical way that E'(u) — AG’(u) = 0. Instead we say that u is a critical point
of (3.2), (3.3) if the weak slope |dE|g(u) in the metric space K, that replaces
| E'(u) — AG'(u)|), vanishes (cf. Degiovanni & Marzocchi [10]).
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For our analysis we need some Palais—Smale condition as compactness con-
dition. Therefore we assume that w satisfies (W) and we work in the different

Banach space
1
P
v :== (/ |Dv|? dx —|—/ o~ |[v|? dx) < oo}.
Q Q

Obviously X — X continuously and ¥ C X. From (7.4) below we get ){ cY
and, hence, Y = X as sets. We start by collecting properties of the space X, and
of the maps

X = {v e DyP ()

Gi(u) = /Qwi|u|l’ dx.

Proposition 7.1. We have that:
(1) Xisa uniformly convex Banach space and therefore reflexive.

(2) G- is continuously differentiable on X with

(G (u),v) = /Qw_|u|p_2uv dx forallu,veX.

(3) If (W) is satisfied, then G is continuously differentiable on X with

(Gly (u),v) :/ ot ulP2uvdx  forallu,v e X
Q

and G’+ ‘X > X*is completely continuous.
Notice that in a uniformly convex Banach space u, — u as long as u,, — u and
lunll — |lu|l (cf. Zeidler [23, p. 604]).

Proof. (1) To show completeness, let {u,} be Cauchy sequence in X. Then it is
a Cauchy sequence in X and u,, — u in X. Thus u, — u in L?"(Q) if p < n or
in L°(2) if p > n and, up to a subsequence, u, — u a.e. on Q. Since {u,} is
bounded in X , we have by Fatou’s lemma

/ o |ul?dx < liminf/ o |lug|?dx < ¢
Q Q

and, thus, u € X. Clearly, {(a)‘)%un} is also Cauchy sequence in L?(2). Hence
there is some 1 with

(@) Pun — (@) 7ii in LP(Q)
and we get = u a.e. on{w~ > 0}. Consequently, G_(u;, —u) — Oand u,, — u
in X . Therefore X is complete. Uniform convexity follows as in Adams [1, p. 7f.],
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since X can be considered as cross product of L?-spaces (note that the weight
o~ can be considered as the density of a measure on 2 and see Section A.4).
Consequently, X is reflexive (cf. [23, p. 604]).

(2) We argue as in the proof of Lemma 3.3 with @™ instead of w to get the
directional derivative

G (u;v) = / o [u|P 2uvdx forallu,v e X.
Q
By Holder’s inequality

—1 1
|GL(u:v)|§/ 07157 JulP o o] dix
Q

=1 1
D 2
< (/ a)_|u|pdx) (/ a)_|v|1’dx)
Q Q
<c|vlg forallv e X. (7.2)

Thus G’ (u) exists as Giteaux derivative. For a sequence u, — u in X, which
we can assume to converge pointwise a.e. on €2, we find v, € X with |Jv,[| g =1
such that

IGZ (un) — GL()|| = (GL(un) — GL(w). vn)
= / w_||un|p_2un — |u|p_2u| Up dX
Q

_.p=1 _ _ 1
=/Q(w )57 1?21 — u|P~2u] @)% |vn] dx

p—1

Holder P P
< (/Q o |[un?"2up — [P 2u| 77 dx)

. (/ o |vg|? a’x) ) (7.3)
Q

/ o |vuPdx <1
Q

=

Since

and
- -2 P2, | 75T - p p
w ||”n|p un — |ul u\p <o (lunl? + u|?),
generalized dominated convergence and the subsequence principle imply

G’ (un) — G (u)

and, thus, the continuity of G’_(-) on X.
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(3) For the directional derivative G (u: v) we basically argue as in the proof of
Lemma 3.3. But we now use (W) for the integrability of the right hand side in
(3.5). More precisely, we still use X C L%(2) if p > n and for p < n we apply
Young’s inequality to get

lot[ul? < clo™™P +clulP” and |oT||v]? < cloTP +clv]|P". (1.4)
This way we obtain

Gg_(u;v)=/ ot u|P2uvdx forallu,v e X.
Q

As in (7.2) we get

pr—1 1

|G’+(u;v)|§(/ a)+|u|pdx) ! (/ a)+|v|pdx)p.
Q Q

For p > n we readily conclude
—1 igd
G (w;v)] < 0T |piulf= [vLee < cvlx <clvllg forallve X.

If p < n, then

n—p p—1

|G/+(u:v>|H6§”((/Q b dx)"(/g |u|P*dx) ' )
((fyrortas) ([pras) ")

1
c(/ lv|?" dx)p
Q

clvlx <cllvllz forallv e X. (7.5)

IA

IA

Thus G/, (u) exists as Géateaux derivative for any u € X.
Let now u, — u in X. Then there are v, € X with ||v,|| g = 1 such that, as in
(7.3),

p—1

2 p
16, () — G, ()] < ( /Q 0 |t ? 2t — 1?2 77 dx)

([ ottt ax)

As in the arguments above we obtain

Y
/ o vpPdx ) =cluallg <c.
Q

(7.6)

1
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For p > n we have u, — u in L°°(Q2) and we readily derive G/, (u,) — G, ().
Thus G/, (-) is completely continuous on X in that case. For p < n we consider

r_
Uy 1= ||u,,|p_2u,, — |u|p_2u|P—1
and, by convexity, we have
¥
™ P < (Jun P71 4 [P PT < e (jual? + u]P).

Since X < LP"(£2), we conclude that {1, } is a bounded sequence in L7 ().
Thus, at least for a subsequence,

_p_ n n
[un)?2up — [u[P72u| 7T =i in L77(Q) = L7 (Q).

Since, up to a subsequence, u, — u a.e. on Q (by u, — u in )Z), we obtain
U, — 0a.e.on 2. Therefore ti, — 0in L#(Q). Byow™ ¢ L%(Q) and the sub-
sequence principle we derive from (7.6) that G/, (un) — G’, (). Hence, G/, () is
completely continuous on X also for p < n. o

In order to apply some abstract theorem about critical points let us first introduce
some terminology. For a function F' : M — R on a metric space M we denote
the weak slope of F at u by |dF|(u) = |dF|p(u) and we call u € M a critical
point of F if |dF|(u) = 0. We say that F satisfies the Palais—Smale condition at
level y € R if any sequence {u; } in M with F(u,) — y and |d F | (4,) — 0 has
a convergent subsequence u;,’ — u in M. By gen S we denote the Krasnoselkii
genus of a closed symmetric set S with 0 &€ S given by

gen S := inflk € N | thereis f : S — R \ {0} odd, continuous}

where inf @ = oo and gen @ := 0 (cf. [23, p. 319]).
We will apply Proposition A.5 to function E on the metric space K where the
metric is induced by X (notice that Y = X as sets). Let us still recall the estimate

|dE |k (1) = min{[|[E* — AG' ()| | E* € dE(u), A € R} (1.7)

from Degiovanni & Schuricht [11, Theorem 3.5] which implies that critical points
satisfy a corresponding eigenvalue problem (7.1). We also use the condition

(A3) up ~uin X, E; € 0E(uy), and (E,;, u, —u) — 0 implies u, — u in X

to verify a Palais—Smale condition for E. Notice that (A3) is a nonsmooth version
of condition (S) that is typically used in critical point theory and that implies the
stronger conditions (S)g and (S);. In our case of a convex function £ a nonsmooth
version of the weaker condition (S)+ would be equivalent to (A3) by monotonicity
of dE(-) (cf. Zeidler [24, 27.1]).
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Proposition 7.2. Let (A), (Ala), (A1b), (A2), (A3), and (W) be satisfied. Then:
(1) E satisfies the Palais—Smale condition on K at any level y € R.

(2) supg £ = oo.

(3) sup{gen(S) | S C K compact, symmetric} = oo.

Let us discuss condition (A3) before we prove the proposition.

Remark 7.3. (1) Condition (A3) is satisfied if there is some ¢4 > 0 with
(a1 —az,q1—q2) > c4lq1—q2|P forall g; € R"?, a; € 0A(x,q;), i = 1,2.
(7.8)
This can readily be deduced from

(Ep—E* up—u) = /

Q
where a,, and a correspond to E,; and E*, respectively.

(apn—a, Dupy—Du)dx > 64/ |Duy—Dul? dx > 0
Q

(2) If we replace (A3) in Proposition 7.2 with monotonicity condition (7.8), then
(A1b) can be omitted. To see that we first notice that ¢ = 0 minimizes the
function A(x,-) by (Ala) and (A2) and, thus, 0 € dA(x,0). With g, = 0,
a» = 01in (7.8) condition (A1b) follows.

(3) In the case of the p-Laplace operator (i.e. A(x,q) = |¢g|?) the monotonicity
condition (7.8) is satisfied for p > 2 but not for p < 2 (cf. Lindqvist [18, Lem-
ma 4.2]). Nevertheless (A3) can be shown directly for all p > 1 (cf. Szulkin
& Willem [22]).

Corollary 7.4. Let (A), (Ala), (Alb), (A2) be satisfied. Then

lullg == EG)F = ( [Q A(x,Du)dx)p

is an equivalent norm on X. If X is uniformly convex with norm || - || g, then (A3)
is satisfied.

Proof. First we notice that we can take f = 0 in (Ala) by (A2). Then we readily
derive the equivalence of the norms || - ||x and || - || g from (Ala) and (2.3).
Now let u, — u be a sequence as in (A3). By convexity we have

E(u) <liminf E(uy)
n—oo
and
(Exup —u) > E(up) — E(u) for E); € dE(up).

Thus
limsup E(u,) < E(u).
n—oo
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Consequently, E(up) — E(u), i.e. |un||lg — ||u||g. Hence ||u, —u||g — 0 by
uniform convexity and, therefore, u, — u in X by the equivalence of norms. But
this implies condition (A3). i

Proof of Proposition 7.2. (1) Let {u,} € K be a sequence with E(u,) — y and
|dE |k (un) — 0. Since 0E (u,) # @, there are E,; € dE(u,) and corresponding
measurable functions a, with d,(x) € d0A(x, Du,(x)) a.e. on Q given by Lem-
ma 3.1.

We have that
(Alb) 1
/lDun|1’dx < — | {a@n(x), Duy(x))dx
Q ¢ Ja
= ﬁ/ A(x, Dup(x)) dx = LE@y). (7.9
c2 JQ Cc2

For p < n we get

_ u, ek Holder
oot dx+ 1 [ ot ax 2 oyl

—Lr" (7.9)
< cllolapllDunlly < cllo®ln/pEun). (7.10)

Analogously, with X < L°°, we obtain
/ o up|Pdx +1<c|ot|1E(u,) forp > n.
Q

Hence u, is bounded in X and, at least for a subsequence, U, — u in X andin X.
If y = 0, we get a contradiction in (7.10), since the most left term is positive, and
thus y > 0.

By (7.7) we find A, € R and E;; € dE(u,) with corresponding functions a,
(notice that 0F (u,) # @ is weakly*-compact) such that

|dE|(un) > min{||E* — AG (u,)| | E* € 0E(uy,), A € R}
= | Eq — 2nG'(un) ||

> <E;; — A G (un), ”—”>‘ (7.11)

[l |

1
[[n l
(2‘2),ﬂn€K V4

llun |

/ (an, Ditn) dx —xnp/ olinl? dx
Q Q

> c|E(un) — Anl

/ A(x, Duy)dx — A,
Q
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where, for the last estimate, we have used that the sequence {u } is bounded. From
|dE|(u,) — 0 we derive that

An =y > 0.

Analogously to (7.11) we have that

lun —ull |dE|(un) = (Ey — 2n G’ (un). un —u)

= (E; — MG/ (up) + An G (up), up — u).
Since G ’+ is completely continuous,
nll)rgo An(Gy (up), upn —u) = 0.
Choosing any E* € 0E(u) # @, we have
(E*,un —u) — 0.

Since {u,} is bounded, we get in the limit

0= lim |jun —ull|dE|(un)

> limsup (E; — E*, up — u) + limsup A (G’ (un). up — u).

n—o0 n—o0

The convexity of G_ implies that

G_(u) <liminf G_(u,) < limsup G_(up)
n—>00 n—00
and
lim sup(G’_(un), Up — u) > limsup G_(u,) —G_(u) > 0.
n—oo

n—o00

By the convexity of E we have
(Ey — E* up —u) > 0.
Consequently (E¥, u, —u) — 0 and, by (A3), we get u, — u in X. Moreover,

Jim G- (un) = G- (u)

by y > 0. We conclude that |[u, | g — [lul g and, since X is uniformly convex,
u, — u in X. Thus the Palais—Smale condition is satisfied.

(2) Let y € Q be a point of density 1 of {w > 0} and a Lebesgue point of w.
Then we can find 0 < r; < rp and a Lipschitz continuous function vo supported on
B, (y) with 0 < vg < l and vo = 1 on By, (y) such that & := G(vg) > 0. More-
over there is 0 < rg < r such that /2 < G(vg 4+ v) < 2« for all Lipschitz con-
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tinuous v supported on B,,(y) with 0 < v < 1. Obviously there are Lipschitz con-
tinuous functions vy supported on B, (y) that are radially symmetric with respect
to y and that satisfy 0 < vy < 1 and |Dvg(x)| > k a.e. on By, (y) (take functions
that oscillate “radially”). For

- Vo + Vg
Vg = - 1
G(vo + v)?
we then get G(7r) = 1 and there is some ¢ > 0 with
E(vo+vx) _ E(vo) + E(vp)
G(vo + vg) G(vo + vg)

> i (E(v()) + C_z/ | Dvg [P dx) > c(E(vo) + k?). (7.12)
P Bro(y)

E(vr) =

— 2«

But this gives the assertion.

(3) For k € N let By, ..., By C Q2 be pairwise disjoint open balls centered at
Y1i...., Yk, respectively, such that all y; are points of density 1 of {w > 0} and
Lebesgue points of w. Then we find v; € X supported on B; such that G(v;) = 1
forall j =1,...,k. Set X :=lin{vy, ..., vi} for the linear hull of the v; and

consider the convex hull Cy := conv{xvy,..., vg}. Then

k k
Iy := {Zajvj Z|Olj|=1,olj ER}
j=1 j=1

is the boundary of C within X} . By the equivalence of norms in RF thereisc > 0
such that for v € Ty
k
PRLAY

k k p
=Z|aj|PZC(Z|aj|) =c>0.
J=1 J=1

Thus v — v/ G(v)% is an odd homeomorphism from I’y to the normalized set

p k
dx = Z|a,-|l’/ wlv;|P dx

j=1 &

[y = ()5 = v/G)7, ve T} C K
and we readily verify that gen Iy = k (cf. [23, p- 320]). o

In order to apply Proposition A.5 we still notice that Lemma 3.1 remains true
in X. Combined with Proposition 7.1, Proposition 7.2, and (7.7) we obtain the
next result.
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Theorem 7.5. Let (A), (Ala), (Alb), (A22, (A3), (W) be satisfied. Then for any
k € N there are critical points +uy € X of E subject to K, and the ‘uy, are
eigenfunctions of (7.1) with corresponding eigenvalues A — oo.

Remark 7.6. (1) If o™~ satisfies assumption (W 1) instead of o™ and if we replace
o with —o in the previous theorem, then we obtain a sequence of eigenvalues
ik — —0OQ.

(2) Let us provide specific examples satisfying all the assumptions of Theo-
rem 7.5. In each of the examples below, the assumptions (A), (Ala), (Alb), and
(A2) can be checked easily (cf. also Section 2), and for (A3) we apply Corol-
lary 7.4.

Of course the theorem applies to the prototype examples A(x,q) = |¢|? for
1 < p < oo and covers previous results. More generally we can take

A(x,q) =|q|? forl <s,p <oo

(cf. Section A.4 for uniform convexity of the corresponding norm).
Nonsmooth examples satisfying all the assumptions of Theorem 7.5 are given,

e.g., by
Ai(x,q) = |q|{J + gl withl <s,p < o0

and
Aco(x,q) = |q1% + Iq|¥ with 1 <, p < oco.

To see that we first notice that the norms

1/p 1/p
Lp = (/ |Du|? dx) and [t co,p 1= (/ |Du|%, dx)
Q Q

are equivalent to the uniformly convex norm

1/p
5p = (/ |Du|§’dx) .
Q

D nl/r _ 1/p
(lullf + [ell2)™F = QA1(x,Du)dx

[Ju

e

Then

and
1/p 1/p
(lull2, + lu)?)? = ( /Q Aoo(x,Du)dx)

are also uniformly convex norms on X by Proposition A.8 in Section A.4 below
(cf. also Beauzamy [6, Exercise 3.11.1]). Hence, by Corollary 7.4, condition (A3)
is satisfied for A1 and Ao.
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A Appendix

A.1 Tools from convex analysis

Here we collect some results of convex analysis specialized to our setting. Let
Q C R” be open and, for 1 < p < oo, set X := DyP(R), Z := L?(Q,R").
Moreover, let A : Q x R” — R be such that A(x,-) is convex for all x € Q and
that A(-,q) is (Lebesgue) measurable for all g € R”. We assume that there are
c >0, B e LY(Q) with

|A(x,q)| <clq|? + B(x) forallg € R", ae.x € Q (A.1)
and that there is @ € L?'(Q,R"), B € L' (Q) with

A(g.x) > (@(x).q) + B(x) forallx € Q, ¢ € R™. (A.2)
Notice that the last condition is trivially satisfied if A(g,x) > 0 for all x € ,
q € R"™. Now we define

F(a) :=/§2A(x,a(x)) dx fora € Z.

Lemma A.1. The function F : Z — R is finite, convex, and continuous. Moreover
IF (@) = {a € L? (Q,R") | a(x) € dA(x,a(x)) fora.e. x € Q) foralloa € Z
(0A denotes the subdifferential with respect to the second argument).

Proof. Note that F is finite by (A.1) and convex by the convexity of A(x,-). Let
an — o« in Z. Then, possibly for a subsequence, o, (x) — a(x) a.e. on Q. By
(A.1),

[A(x, an(x))] < clap(x)]? + B(x) forae. x € Q.

Thus, F(o,) — F(a) by generalized dominated convergence and continuity of
F is verified. The statement about the subdifferential is a direct consequence of
Barbu [4, Proposition 1.9] combined with (A.2). O

Consider the continuous linear operator L : X — Z with
Lu := Du
and let L* : Z* — X™* denote its adjoint operator.

Lemma A.2. The function F o L : X — R is finite, convex, and continuous on X .
Furthermore
O(F o L)Y(u) = L*0F(Lu) forallu € X.
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Proof. We readily verify that the function F is finite, convex and continuous on X.
The structure of the subdifferential follows from Ekeland & Temam [12, Proposi-
tion 1.5.7]. O

Define £ : X — R with
E(u) = / A(x, Du(x))dx.
Q
Obviously, E(u) = F(Lu). Thus E is convex and continuous on X, and we obtain

Proposition A.3. Let E* € JE(u). Then there is some a € LP (2, R") such that
a(x) € dA(x, Du(x)) fora.e x € Q

and
(E*,v) = / {(a(x), Dv(x))dx forallv € X.
Q

Proof. Use the previous results and observe that there is some F* € dF(Du) such
that
(E*,v) = (L*F*,v) = (F*,Lv) forallv € X. O

A.2 Existence of critical points

Many general results about the existence of critical points are based on the cat-
egory as topological index. However, for the verification of assumptions or for
subsequent arguments the genus as topological index appears to be more conve-
nient. Therefore we will provide some critical point result for our analysis based on
the genus where we use the notation introduced in Section 7. Let F : M — R be
a function on the metric space M. For a closed set A C M we define the cat-
egory catpyr A of A within M to be the smallest number k € N of closed sets
Ay, ..., A C M such that all A; are contractible in M and A C Uf-czl A;. In
particular, catps A = oo if there is no finite cover of that kind and catys @ = 0. Let
us recall the following general result from Degiovanni & Marzocchi [10, Theo-
rem 3.10].

Proposition A.4. Let M be a weakly locally contractible complete metric space,
let F: M — R be a continuous function that is bounded from below and that
satisfies the Palais—Smale condition at any level y € R, and assume

sup{catpyy A | A C M compact} = oo.
Then F has a sequence of critical points {uy }ren in M with critical values

= inf max F(u
Vi AeA, ucA ( )
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where
Ar ={A C M | Acompact, A # 0, catyr A > k}.

Moreover, y — oo if supy, F = oo.

For analyzing a special case we consider a Banach space Z and a function
E : Z — R thatis continuous and symmetric, i.e. E(—u) = E(u). We are looking
for critical points of E on the metric space

K={ueZzZ|Gu)=1}

where G : Z — R is also assumed to be continuous and symmetric, i.e. we are
looking for u € K with vanishing weak slope |dE|g (1) = 0. Moreover we as-
sume that there is some 8 > 0 with

G(tu) = tPG(u) forallr > 0. (A3)

For a nontrivial application of the previous proposition to this situation we have
to work in the projective space identifying the antipodal points {u, —u}. Hence we
define

A* :={{v,—v} | v e A} forany symmetric A C Z \ {0}

(often also denoted as 4/Z?) and we can consider £, G as functions on (Z \ {0})*
in a natural way. Proposition A.4 now provides critical points u* of E as function
on the space K* (endowed with the induced metric), i.e. |dE|g*(u*) = 0. But we
are interested in critical points of £ on K and we claim to formulate some exis-
tence result with conditions in terms of Z and K rather than K*. We first observe
that u and —u are critical points of E on K if the corresponding u* is a critical
point of E on K* (cf. Milbers & Schuricht [20]). Moreover we readily see that
E is continuous, bounded from below, and satisfies the Palais—Smale condition at
level y as function on K* if and only if these properties are satisfied for E as func-
tion on K and, clearly, supg £ = supg+« E. Let now #Aj denote the sets defined
in Proposition A.4 with respect to the metric space K™* and let us consider

By :={A C K | A compact, symmetric, A # @, gen A > k}.

In order to compare 4 and By we fix A* € 4y and let A be the corresponding
setin K. A simple normalization argument using (A.3) shows that

catg A* = cat(z\{oy* A*
and from Rabinowitz [21, Theorem 3.7] we obtain that

cat(z\fop*A* = gen A.
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But this means that the sets A and By uniquely correspond to each other. Using
(A.3) we obtain that K and K™ are always weakly locally contractible (i.e. any
point has a contractible neighborhood in K and K*, respectively). Hence Propo-
sition A.4 directly implies the following result.

Proposition A.5. Let Z be a real Banach space, let E, G : Z — R be continuous
and symmetric, let G satisfy (A.3), and let K be the metric space as defined above.
Moreover, let E be bounded from below on K, let it satisfy the Palais—Smale con-
dition on K at any level y € R, and let

sup{gen A | A C K compact, symmetric} = oo.
Then E has a sequence of critical points {uy } in K with critical values

= inf max E(u
Yk AeBy ucA ()

where By is given as above. In addition, yy — oo if supg E = oo.

A.3 Capacity

Here we formulate in which way we use the notion of capacity and related notions
(cf. Heinonen et al. [15]). For Q@ C R” open, K C Q2 compact, U C 2 open, and
E C Q arbitrary we define the (variational) capacity

cap, (K, Q) := inf{/Q |Dul|? dx

cap, (U, 2), := sup{cap, (K, 2) | K C 2 compact},
cap,(E, ), := inf{cap, (U, Q) | U open with E C U C Q}.

9 eCgP(R),9>1 on K},

We say that E C R" has capacity zero, written cap, (E) = 0, if
cap,(ENU,U) =0 forallU C R" open.

Otherwise we write cap, (E) > 0. A property holds quasi-everywhere (or g.e.) if
it holds except on a set of capacity zero.
In addition, for £ C R” we consider the Sobolev-capacity

Cap,(E) := inf{/ |u|? + |Dul? dx | u € WHP(R"),
R}’l

U= lonsomeopenU,ECU}.

We have Cap,,(E1) < Cap,(E>) if E1 C E> and

Capp( U Ek) < Z Cap,Ey forany Ey, E,... C R”.
keN keN
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Moreover, for E C R”
Cap,(E) =0 ifandonly if cap,(E) =0

(cf. [15, Corollaries 2.37 and 2.39]). A function u : 2 — R U {z00} is said to be
quasi-continuous if for any & > 0 there is an open U with Cap, (U) < ¢ such that
u is finite and continuous on  \ U.

Foru € L} (R") we define the precise representative u* by

() = lim, ¢ mer(x) f(y)dy if the limit exists,
0 otherwise.

Proposition A.6 (Poincaré inequality). Let U C R” be an open and bounded do-
main with Lipschitz boundary, let V- C U with Cap, (V) > 0and 1 < p < 00, and
set

Z:={veW'PU)|v*=00nV).

Then there is ¢ > 0 such that
[ [v|? dx < c/ |Dv|? dx forallve Z.
U U

Proof. For contradiction let us assume that there are vy € Z with

lvellwi.r = 1, / [ve|? dx > k/ |[Dvg|? dx forallk e N.  (A4)
U U

Since v, is bounded in W -7 (U), we have (at least for a subsequence) that

wl.p L?
vy — v and vp — v.

By (A4),
1 1
/|ka|1’dx§—/ |vg|? dx < — — 0.
U k Ju k

Hence vy — v in WP (U) with Dv = 0 a.e. on U. Thus v* is constant on U
with |[v]|y1.» = 1 and, at least for a subsequence, vy — v* a.e. on U. Clearly, v*
is quasi-continuous.

Using [15, Theorem 4.3] and v € Z, we find smooth wy, € W2 (U)NC>®(U)
approximating v and open Wy C U such that

1 1
vk —willwi.r < o cap, Wi < 41, |wg (x)] < x on V\W; forallk e N
where y := Cap,V > 0. Consequently, wy — v in WLP(U). Again by [15, The-
orem 4.3] there is some quasi-continuous © € W 1?7 (U) such that, at least for
a subsequence,

wry > 0 qe.onU, wip—>v* aeonU and wg —0onV \W (AS5)
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with W := g en Wk. Obviously U = v* =vae. onU,ie. U = v* = v within
WLP(U). Since 7 and v* are both quasi-continuous, it follows that T = v* q.e.
on U by [15, Theorem 4.14]. By

y = Cap,V < Cap,(V N W) + Cap,(V \ W) < Cap, (W) + Cap,(V \ W)

and

Cap, W < Z Cap, Wy < g
keN

we obtain Cap, (V' \ W) > y/2. By (A.5) we get v = 0 g.e.on V' \ W and, hence,
v* =0q.e.on V \ W.Since v* is constant on U, we conclude that v = v* is zero
in W12 (U). But this contradicts ||v| 1., = 1, which confirms the assertion. 0

Let us finally recall Proposition 2.1 from Kawohl et al. [16] where we include
the short proof for the convenience of the reader.

Proposition A.7. Let u : Q — R be quasi-continuous and let
Z;:={xeQ|ulx) =t}
be a level set. Then there are sets Fy, C Z; closed in Q such that
Cap,, (z,\ U F,,) =0. (A.6)
neN

Proof. Since u is quasi-continuous, for any n € N there is an open U, such that
Capp U, < % and u continuous on 2 \ U,, which is closed in 2. Hence the set
Fn,:=2Z; N (Q\ Uy) is also closed in  and

Cap, (z,\ U F,,) < Cap,(Zi \ Fu)

neN
1
= Cap,(Z; NUy) < — foralln € N.

n
But this implies (A.6). O
A.4 Uniform convexity
Let us recall that a Banach space X with norm || - || is uniformly convex if for any
& > 0 there is some 6 > 0 such that, foru,v € X,

Wil = ol = 1. [u—v]>e impliesthar 1 F20 _y 5
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Note that Sobolev spaces such as Wol’p (2) and Dé’p (£2) equipped with the stan-
dard norm ([, |Du|},’ dx)P are uniformly convex for 1 < p < oo (cf. Adams

[1, p. 7£.1). Clearly
1/p
s,p = (/ |Du|? dx)
Q

are equivalent norms on these spaces for 1 < s < co. Moreover these norms are
also uniformly convex for 1 < s < oo (cf. Fan & Guan [14, Theorem 2.4] with
A(€) = ¢(|§]s) and @(1) = [7]P).

We now provide some result for the construction of further uniformly convex
norms (cf. also Beauzamy [6] where this is stated as Exercise 3.11.1 without proof).
This will allow the construction of nonsmooth examples for A satisfying condi-
tion (A3) (cf. Remark 7.6 (2)).

[ Du|

Proposition A.8. Let X be a Banach space that is uniformly convex with norm
|| - || and let || - ||« be a further norm on X such that

lull« <cllu| forallue X
with some ¢ > 0. Then
lllo == (lll? + 1| 2)? with 1 < p < 00

is an equivalent norm on X that is also uniformly convex.

Proof. Letus fix p € (1,00). Then anorm || - ||~ is uniformly convex on X if and
only if for any & > 0 there is some § > 0 such that any u, v € X with

ull~ <1 Jvl~ <1, flu—-vl~=e

satisfy
[ullZ + [[v]|Z

u+v
- 1—
2 =(1-9) 2

~

(cf. Beauzamy [6]).
For verifying this condition we consider u, v € X satisfying

ullo =1, vllo=1, flu—vlo=e
and we fix ¢ > 0. Then
e? < fu—v|Z +llu—v|? < (c? + Dllu—v|?

Now we take & > 0 such that 7 := % and, for the norm || - ||~ = || - ||, we
choose the corresponding §(€) according to the condition for uniform convexity
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stated above. Then, also using convexity of || - || «, we obtain

utoll? Ju+o|? Ju+o|?
2 o I 2 s 2
p p P
o (Bl Dl \? L I
2 2
_ el +lE | ul? + lvl?
- 2 2
o el A Qoll? Jull? + Jv]]?
-8
o (M
_ ullg +1vlig 8@ Iullf + HvllE— 8¢) ull” + [lv]”
- 2 2c 2 2 2
p p
u v
< (1 so(en "l T 1o (A7)
where 53 56)
g) 0(8
) ‘= min{ —=, — 1.
o(e) mln{ e’ 3 }
But this implies the uniform convexity of || - ||o. The equivalence of || - ||o to || - ||
follows easily. o
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