期刊论文详细信息
Advances in Nonlinear Analysis | |
Hölder gradient estimates for a class of singular or degenerate parabolic equations | |
article | |
Cyril Imbert1  Tianling Jin2  Luis Silvestre3  | |
[1] Department of Mathematics and Applications;Department of Mathematics, The Hong Kong University of Science and Technology;Department of Mathematics, The University of Chicago, 5734 S. University Avenue | |
关键词: Regularity; degenerate parabolic equations; singular parabolic equations; | |
DOI : 10.1515/anona-2016-0197 | |
学科分类:社会科学、人文和艺术(综合) | |
来源: De Gruyter | |
【 摘 要 】
We prove interior Hölder estimates for the spatial gradients of the viscosity solutions to the singular or degenerate parabolic equation u t = | ∇ u | κ div ( | ∇ u | p - 2 ∇ u ) , u_{t}=\lvert\nabla u\rvert^{\kappa}\operatorname{div}(\lvert\nabla u\rvert^{p-% 2}\nabla u), where p ∈ ( 1 , ∞ ) {p\in(1,\infty)} and κ ∈ ( 1 - p , ∞ ) {\kappa\in(1-p,\infty)} . This includes the from L ∞ {L^{\infty}} to C 1 , α {C^{1,\alpha}} regularity for parabolic p -Laplacian equations in both divergence form with κ = 0 {\kappa=0} , and non-divergence form with κ = 2 - p {\kappa=2-p} .
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202107200000658ZK.pdf | 736KB | download |