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Abstract:Weprove interior Hölder estimates for the spatial gradients of the viscosity solutions to the singular
or degenerate parabolic equation

ut = |∇u|κ div(|∇u|p−2∇u),
where p ∈ (1,∞) and κ ∈ (1 − p,∞). This includes the from L∞ to C1,α regularity for parabolic p-Laplacian
equations in both divergence form with κ = 0, and non-divergence form with κ = 2 − p.
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1 Introduction
Let 1 < p < ∞ and κ ∈ (1 − p,∞). We are interested in the regularity of solutions of

ut = |∇u|κ div(|∇u|p−2∇u). (1.1)

When κ = 0, this is the classical parabolic p-Laplacian equation in divergence form. This is the natu-
ral case in the context of gradient flows of Sobolev norms. Hölder estimates for the spatial gradient of their
weak solutions (in the sense of distribution) were obtained by DiBenedetto and Friedman in [8] (see also
Wiegner [26]).

When κ = 2 − p, equation (1.1) is a parabolic homogeneous p-Laplacian equation. This is the most rele-
vant case for applications to tug-of-war-like stochastic games with white noise; see Peres and Sheffield [22].
This equation has been studied by Garofalo [10], Banerjee andGarofalo [3–5], Does [9], Manfredi, Parviainen
and Rossi [19, 20], Rossi [23], Juutinen [15], Kawohl, Krömer and Kurtz [16], Liu and Schikorra [18], Rudd
[24] as well as the second and third authors of this paper [14]. Hölder estimates for the spatial gradient of
their solutions were proved in [14]. The solution of this equation is understood in the viscosity sense. The
toolbox of methods that one can apply are completely different to the variational techniques used classically
for p-Laplacian problems.

Equation (1.1) can be rewritten as

ut = |∇u|γ(∆u + (p − 2)|∇u|−2uiujuij), (1.2)

where γ = p + κ − 2 > −1. In this paper, we prove Hölder estimates for the spatial gradients of viscosity solu-
tions to (1.2) for 1 < p < ∞ and γ ∈ (−1,∞). Therefore, it provides a unified approach for all those γ and p,
including the two special cases γ = 0 and γ = p − 2 mentioned above.
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The viscosity solutions to (1.2) with γ > −1 and p > 1 fall into the general framework studied by Ohnuma
and Sato in [21], which is an extension of the work of Barles and Georgelin [6] and Ishii and Souganidis [13]
on the viscosity solutions of singular/degenerate parabolic equations.We postpone the definition of viscosity
solutions of (1.2) to Section 5. For r > 0, by Qr we denote Br × (−r2, 0], where Br ⊂ ℝn is the ball of radius r
centered at the origin.

Theorem 1.1. Let u be a viscosity solution of (1.2) in Q1, where 1 < p < ∞ and γ ∈ (−1,∞). Then there exist
two constants α ∈ (0, 1) and C > 0, both of which depend only on n, γ, p and ‖u‖L∞(Q1), such that

‖∇u‖Cα(Q1/2) ≤ C.
Also, the following Hölder regularity in time holds:

sup
(x,t),(x,s)∈Q1/2

|u(x, t) − u(x, s)|
|t − s|(1+α)/(2−αγ)

≤ C.

Note that (1 + α)/(2 − αγ) > 1
2 for every α > 0 and γ > −1.

Our proof in this paper follows a similar structure as in [14], with some notable differences that we explain
below.Weuse non-divergence techniques in the context of viscosity solutions. The classical variationalmeth-
ods can only be used for γ = p − 2, when the equation is in divergence form. Theorem 1.1 tells us that our
techniques are in some sense stronger when dealingwith the regularity of scalar p-Laplacian-type equations.
The weakness of our methods (at least as of now) is that they are ineffective for systems.

The result in [14] has recently been extended to allow for a bounded right-hand side of the equation by
Attouchi and Parviainen in [1]. We have not explored the possibility of adding a right-hand side for arbitrary
values of the exponent κ.

The greatest difficulty extending the result in [14] to Theorem 1.1 comes from the lack of uniform
ellipticity. When γ = 0, equation (1.2) is a parabolic equation in non-divergence form with uniformly elliptic
coefficients (depending on the solution u). Because of this, in [14], we use the theory developed byKrylov and
Safonov, and other classical results, to get some basic uniform a priori estimates. This fact is no longer true
for other values of γ. The first step in our proof is to obtain a Lipschitz modulus of continuity. That step uses
the uniform ellipticity very strongly in [14]. In this paper, we take a different approach using the method of
Ishii and Lions [12] (see also [11, Theorem 5]). Another step where the uniform ellipticity plays a strong role
is in a lemma which transfers an oscillation bound in space, for every fixed time, to a space-time oscillation.
In this paper, that is achieved through Lemmas 4.4 and 4.5, which are considerably more difficult than their
counterpart in [14]. Other, more minor, difficulties include the fact that the non-homogeneous right-hand
side forces us to work with a different scaling (see the definition of Qρ

r by the beginning of Section 4).
In order to avoid some of the technical difficulties caused by the non-differentiability of viscosity solu-

tions, we first consider the regularized problem (1.3) below, and then obtain uniform estimates so that we
can pass to the limit in the end. For ε ∈ (0, 1), let u be smooth and satisfy

∂tu = (|∇u|2 + ε2)
γ
2 (δij + (p − 2)

uiuj
|∇u|2 + ε2

)uij . (1.3)

We are going to establish Lipschitz estimates and Hölder gradient estimates for u, which will be independent
of ε ∈ (0, 1), in Sections 2, 3 and 4. Then, in Section 5, we recall the definition of viscosity solutions to (1.2)
as well as their several useful properties, and prove Theorem 1.1 via approximation arguments. This idea of
approximating the problem with a smoother one and proving uniform estimates is very standard.

2 Lipschitz estimates in the spatial variables
The proof of Lipschitz estimates in [14] for γ = 0 is based on a calculation that |∇u|p is a subsolution of a uni-
formly parabolic equation. We are not able to find a similar quantity for other nonzero γ. The proof we give
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here is completely different. It makes use of the Ishii–Lions’ method [12]. However, we need to apply this
method twice: first we obtain log-Lipschitz estimates, and then use this log-Lipschitz estimates and the Ishii–
Lions’ method again to prove Lipschitz estimates. Moreover, the Lipschitz estimates holds for γ > −2 instead
of γ > −1.

Lemma 2.1 (Log-Lipschitz estimate). Let u be a smooth solution of (1.3) in Q4 with γ > −2 and ε ∈ (0, 1).
Then there exist two positive constants L1 and L2 depending only on n, p, γ and ‖u‖L∞(Q4) such that for every
(t0, x0) ∈ Q1 we have

u(t, x) − u(t, y) ≤ L1|x − y|󵄨󵄨󵄨󵄨log|x − y|
󵄨󵄨󵄨󵄨 +

L2
2 |x − x0|

2 +
L2
2 |y − x0|

2 +
L2
2 (t − t0)

2

for all t ∈ [t0 − 1, t0] and x, y ∈ B1(x0).

Proof. Without loss of generality, we assume x0 = 0 and t0 = 0. It is sufficient to prove that

M := max
−1≤t≤0, x,y∈B1

{u(t, x) − u(t, y) − L1ϕ(|x − y|) −
L2
2 |x|

2 −
L2
2 |y|

2 −
L2
2 t2}

is non-positive, where

ϕ(r) = {
−r log r for r ∈ [0, e−1],
e−1 for r ≥ e−1.

We assume this is not true and we will exhibit a contradiction. In the rest of the proof, t ∈ [−1, 0] and
x, y ∈ B1 denote the points realizing the maximum defining M.

Since M ≥ 0, we have
L1ϕ(|x − y|) +

L2
2 (|x|

2 + |y|2 + t2) ≤ 2‖u‖L∞(Q4).

In particular,
ϕ(δ) ≤

2‖u‖L∞(Q4)

L1
, where δ = |a| and a = x − y, (2.1)

and

|t| + |x| + |y| ≤ 6√
‖u‖L∞(Q4)

L2
. (2.2)

Hence, for L2 large enough depending only on ‖u‖L∞(Q4), we can ensure that t ∈ (−1, 0] and x, y ∈ B1. We
choose L2 here and fix it for the rest of the proof. Thus, fromnowon L2 is a constant depending only on ‖u‖L∞ .

Choosing L1 large, we can ensure that δ (< e−2) is small enough to satisfy

ϕ(δ) ≥ 2δ.

In this case, (2.1) implies
δ ≤
‖u‖L∞(Q4)

L1
.

Since t ∈ [−1, 0] and x, y ∈ B1 realize the supremum defining M, we have that

∇u(t, x) = L1ϕ󸀠(δ)â + L2x,
∇u(t, y) = L1ϕ󸀠(δ)â − L2y,

ut(t, x) − ut(t, y) = L2t,

[
∇2u(t, x) 0

0 −∇2u(t, y)
] ≤ L1 [

Z −Z
−Z Z

] + L2I, (2.3)

where
Z = ϕ󸀠󸀠(δ)â ⊗ â + ϕ

󸀠(δ)
δ
(I − â ⊗ â) and â = a

|a|
=

x − y
|x − y|

.

For z ∈ ℝn, we let
A(z) = I + (p − 2)

zizj
|z|2 + ε2

,
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q = L1ϕ󸀠(δ)â, X = ∇2u(t, x) and Y = ∇2u(t, y). By evaluating the equation at (t, x) and (t, y), we have

L2t ≤ (|q + L2x|2 + ε2)
γ
2 Tr(A(q + L2x)X) − (|q − L2y|2 + ε2)

γ
2 Tr(A(q − L2y)Y). (2.4)

Whenever we write C in this proof, we denote a positive constant, large enough depending only on n, p, γ
and ‖u‖L∞(Q4), which may vary from line to line. Recall that we have already chosen L2 above depending on
‖u‖L∞ only.

Note that |q| = L1|ϕ󸀠(δ)|. By choosing L1 large enough, δ will be small, |ϕ󸀠(δ)| will thus be large, and
|q| ≫ L2. In particular,

|q|
2 ≤ |q + L2x| ≤ 2|q| and |q|2 ≤ |q − L2y| ≤ 2|q|. (2.5)

From (2.3) and the fact that ϕ󸀠󸀠(δ) < 0, we have

X = ∇2u(t, x) ≤ L1
ϕ󸀠(δ)
δ
(I − â ⊗ â) + L2I,

−Y = −∇2u(t, y) ≤ L1
ϕ󸀠(δ)
δ
(I − â ⊗ â) + L2I. (2.6)

Making use of (2.4), (2.5) and (2.6), we have

Tr(A(q + L2x)X) = (|q + L2x|2 + ε2)−
γ
2 L2t + (

|q − L2y|2 + ε2

|q + L2x|2 + ε2
)

γ
2 Tr(A(q − L2y)Y)

≥ −C(|q|−γ + L1
ϕ󸀠(δ)
δ
+ 1).

Therefore, it follows from (2.6) and the ellipticity of A that

|X| ≤ C(|q|−γ + L1
ϕ󸀠(δ)
δ
+ 1). (2.7)

Similarly,

|Y| ≤ C(|q|−γ + L1
ϕ󸀠(δ)
δ
+ 1).

Let
B(z) = (|z|2 + ε)γA(z).

We get from (2.4) and (2.2) the following inequality:

− C ≤ Tr[B(q + L2x)X] − Tr[B(q − L2y)Y] ≤ T1 + T2, (2.8)

where
T1 = Tr[B(q − L2y)(X − Y)] and T2 = |X|󵄨󵄨󵄨󵄨B(q + L2x) − B(q − L2y)

󵄨󵄨󵄨󵄨.

We first estimate T2. Using successively (2.2), (2.5), (2.7) and the mean value theorem, we get

T2 ≤ C|X||q|γ−1|x + y|
≤ C|X||q|γ−1

≤ C(|q|−γ + L1ϕ
󸀠(δ)
δ
+ 1)|q|γ−1

≤ C(|q|−1 + |q|
γ

δ
+ |q|γ−1). (2.9)

We now turn to T1. On the one hand, evaluating (2.3) with respect to a vector of the form (ξ, ξ), for all
ξ ∈ ℝd we have

(X − Y)ξ ⋅ ξ ≤ 2L2|ξ|2. (2.10)

On the other hand, when we evaluate (2.3) with respect to (â, â), we get

(X − Y)â ⋅ â ≤ 4L1ϕ󸀠󸀠(δ) + 2L2. (2.11)
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Inequality (2.10) tells us that all eigenvalues of (X − Y) are bounded above by a constant C. Inequal-
ity (2.11) tells us that there is at least one eigenvalue that is less than the negative number 4L1ϕ󸀠󸀠(δ) + 2L2.
Because of the uniform ellipticity of A, we obtain

T1 ≤ C|q|γ(L1ϕ󸀠󸀠(δ) + 1).

In view of the estimates for T1 and T2, we finally get from (2.8) that

−L1ϕ󸀠󸀠(δ)|q|γ ≤ C(|q|γ + |q|−1 +
|q|γ

δ
+ |q|γ−1 + 1),

or equivalently
− L1ϕ󸀠󸀠(δ) ≤ C(1 + |q|−1−γ +

1
δ
+ |q|−1 + |q|−γ). (2.12)

Our purpose is to choose L1 large in order to get a contradiction in (2.12).
Recall that we have the estimate δ ≤ C/L1. From our choice of ϕ, we obtain ϕ󸀠(δ) > 1 for δ small and

−ϕ󸀠󸀠(δ) = 1
δ ≥ cL1.

For L1 sufficiently large, since γ > −2,

C(1 + |q|−1−γ + |q|−1 + |q|−γ) ≤ C(1 + L−1−γ1 + L
−1
1 + L

−γ
1 ) ≤

c
2L

2
1 ≤ −

1
2L1ϕ

󸀠󸀠(δ).

The remaining term is handled because of the special form of the function ϕ. We have

−L1ϕ󸀠󸀠(δ) =
L1
δ
>
2C
δ

for L1 sufficiently large.
Therefore, we reached a contradiction. The proof of this lemma is thereby completed.

By letting t = t0 and y = x0 in Lemma 2.1 and since (x0, t0) is arbitrary, we have the following corollary.

Corollary 2.2. Let u be a smooth solution of (1.3) in Q4 with γ > −2 and ε ∈ (0, 1). Then there exists a positive
constant C depending only on n, γ, p and ‖u‖L∞(Q4) such that for every (t, x), (t, y) ∈ Q3 and |x − y| < 1

2 , we have

|u(t, x) − u(t, y)| ≤ C|x − y|󵄨󵄨󵄨󵄨log|x − y|
󵄨󵄨󵄨󵄨.

We shall make use of the above log-Lipschitz estimate and the Ishii–Lions method [12] again to prove the
following Lipschitz estimate.

Lemma 2.3 (Lipschitz estimate). Let u bea smooth solution of (1.3) in Q4with γ > −2and ε ∈ (0, 1). Then there
exist two positive constants L1 and L2 depending only on n, p, γ and ‖u‖L∞(Q4) such that for every (t0, x0) ∈ Q1
we have

u(t, x) − u(t, y) ≤ L1|x − y| +
L2
2 |x − x0|

2 +
L2
2 |y − x0|

2 +
L2
2 (t − t0)

2

for all t ∈ [t0 − 1, t0] and x, y ∈ B1/4(x0).

Proof. The proof of this lemma follows the same computations as that of Lemma 2.1, but we make use of the
conclusion of Corollary 2.2 in order to improve our estimate.

Without loss of generality, we assume x0 = 0 and t0 = 0. As before, we define

M := max
−1≤t≤0, x,y∈B1

{u(t, x) − u(t, y) − L1ϕ(|x − y|) −
L2
2 |x|

2 −
L2
2 |y|

2 −
L2
2 t2}

and prove that it is non-positive, where

ϕ(r) =
{{{
{{{
{

r − 1
2 − γ0

r2−γ0 for r ∈ [0, 1],

1 − 1
2 − γ0

for r ≥ 1

for some γ0 ∈ (12 , 1).
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We assume this is not true in order to obtain a contradiction. In the remaining of the proof of the lemma,
t ∈ [−1, 0] and x, y ∈ B1/4 denote the points realizing the maximum defining M.

For the same reasons as in the proof of Lemma 2.1, inequalities (2.1) and (2.2) also apply in this case.
Thus, we can use the same choice of L2 depending on ‖u‖L∞ only that ensures t ∈ (−1, 0] and x, y ∈ B1.

From Corollary 2.2, we already know that u(t, x) − u(t, y) ≤ C|x − y||log|x − y||. Since M ≥ 0,

L1ϕ(|x − y|) +
L2
2 (|x|

2 + |y|2 + t2) ≤ C|x − y|󵄨󵄨󵄨󵄨log|x − y|
󵄨󵄨󵄨󵄨.

In particular, we obtain an improvement of (2.2):

|t| + |x| + |y| ≤ C√ δ|log δ|
L2

.

This gives us an upper bound for |x + y| that we can use to improve (2.9):

T2 ≤ C|X||q|γ−1|x + y| ≤ C(|q|−1 +
|q|γ

δ
+ |q|γ−1)√δ|log δ|.

The estimate for T1 stays unchanged. Hence, (2.12) becomes

−L1ϕ󸀠󸀠(δ) ≤ C(1 + √δ|log δ|(|q|−1 + |q|−1−γ +
1
δ
+ |q|−γ)).

Recall that |q| = L1ϕ󸀠(δ) ≥ L1/2 and ϕ󸀠󸀠(δ) = (γ0 − 1)δ−γ0 . Then

L1δ−γ0 ≤ C(1 + √δ|log δ|(1 + L−11 + L
−1−γ
1 + δ

−1 + L−γ1 )).

The term +1 inside the innermost parenthesis is there just to ensure that the inequality holds both for γ < 0
and γ > 0. Recalling that δ < C/L1, we obtain an inequality in terms of L1 only:

L1+γ01 ≤ C(1 + L
− 12
1 √log L1(1 + L

−1
1 + L

−1−γ
1 + L1 + L

−γ
1 ))

Choosing L1 large, we arrive at a contradiction given that 1 + γ0 > max(12 , −
1
2 − γ) since γ0 > 1

2 and
γ > −2.

Again, by letting t = t0 and y = x0 in Lemma2.3 and since (x0, t0) is arbitrary,wehave the following corollary.

Corollary 2.4. Let u be a smooth solution of (1.3) in Q4 with γ > −2 and ε ∈ (0, 1). Then there exists a positive
constant C depending only on n, γ, p and ‖u‖L∞(Q4) such that for every (t, x), (t, y) ∈ Q3 and |x − y| < 1,

|u(t, x) − u(t, y)| ≤ C|x − y|.

3 Hölder estimates in the time variable
Using the Lipschitz continuity in x and a simple comparison argument, we show that the solution of (1.3) is
Hölder continuous in t.

Lemma 3.1. Let u be a smooth solution of (1.3) in Q4 with γ > −1 and ε ∈ (0, 1). Then there holds

sup
t ̸=s, (t,x),(s,x)∈Q1

|u(t, x) − u(s, x)|
|t − s|1/2

≤ C,

where C is a positive constant depending only on n, p, γ and ‖u‖L∞(Q4).

Remark 3.2. Deriving estimates in the time variable for estimates in the space variable bymaximumprinciple
techniques is classical. As far as viscosity solutions are concerned, the reader is referred to [2, Lemma 9.1,
p. 317] for instance.
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Proof. Let β = max(2, (2 + γ)/(1 + γ)).We claim that for all t0 ∈ [−1, 0)and η > 0 there exist L1 > 0and L2 > 0
such that

u(t, x) − u(t0, 0) ≤ η + L1(t − t0) + L2|x|β =: φ(t, x) for all (t, x) ∈ [t0, 0] × B1. (3.1)

We first choose L2 ≥ 2‖u‖L∞(Q3) such that (3.1) holds true for x ∈ ∂B1. We will next choose L2 such that (3.1)
holds true for t = t0. In this step, we shall use Corollary 2.4 to find that u is Lipschitz continuous with respect
to the spatial variables. From Corollary 2.4, ‖∇u‖L∞(Q3) is bounded depending on ‖u‖L∞(Q4) only. It is enough
to choose

‖∇u‖L∞(Q3)|x| ≤ η + L2|x|β ,

which holds true if

L2 ≥
‖∇u‖βL∞(Q3)

ηβ−1
.

We finally choose L1 such that the function φ(t, x) is a supersolution of an equation which u is a solution of.
Inequality (3.1) thus follows from the comparison principle. We use a slightly different equation depending
on whether γ ≤ 0 or γ > 0.

Let us start with the case γ ≤ 0. In this case, we will prove that φ is a supersolution of the nonlinear
equation (1.3). That is,

φt − (ε2 + |∇φ|2)
γ
2 (δij + (p − 2)

φiφj

ε2 + |∇φ|2
)φij > 0. (3.2)

In order to ensure this inequality, we choose L1 so that

L1 > (p − 1)|∇φ|γ|D2φ| ≥ (ε2 + |∇φ|2)
γ
2 (δij + (p − 2)

φiφj

ε2 + |∇φ|2
)φij .

We chose the exponent β so that when γ ≤ 0, |∇φ|γ|D2φ| = CL1+γ1 for some constant C depending on n and γ.
Thus, we must choose L1 = CL

1+γ
2 in order to ensure (3.2).

Therefore, still for the case γ ≤ 0, β = (2 + γ)/(1 + γ) and for any choice of η > 0, using the comparison
principle, we have

u(t, 0) − u(t0, 0) ≤ η + C(η(1−β)‖∇u‖
β
L∞(Q3) + 2‖u‖L∞(Q3) + ε)

γ+1(t − t0)

≤ η + Cη−1‖∇u‖γ+2L∞(Q3)|t − t0| + C(‖u‖L∞(Q3) + ε)
γ+1|t − t0|.

By choosing η = ‖∇u‖γ/2+1L∞(Q3)|t − t0|
1/2, it follows that for t ∈ (t0, 0],

u(t, 0) − u(t0, 0) ≤ C(‖∇u‖L∞(Q3))
γ+2
2 |t − t0|

1
2 + C(‖u‖L∞(Q3) + ε)

γ+1|t − t0|.

The lemma is then concluded in the case γ ≤ 0.
Let us now analyze the case γ > 0. In this case, we prove that φ is a supersolution to a linear parabolic

equation whose coefficients depend on u. That is,

φt − (ε2 + |∇u|2)
γ
2 (δij + (p − 2)

uiuj
ε2 + |∇u|2

)φij > 0.

Since γ > 0 and ∇u is known to be bounded after Corollary 2.4, we can rewrite the equation assumption
as

φt − aij(t, x)φij > 0, (3.3)

where the coefficients aij(t, x) are bounded by

|aij(t, x)| ≤ C(ε + ‖∇u‖L∞(Q3))
γ .

Since γ > 0, we pick β = 2 and D2φ is a constant multiple of L2. In particular, we ensure that (3.3) holds if

L1 > C(ε + ‖∇u‖L∞(Q3))
γL2.
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Therefore, for the case γ > 0, β = 2 and for any choice of η > 0, by using the comparison principle,

u(t, 0) − u(t0, 0) ≤ η + C(ε + ‖∇u‖L∞(Q3))
γ(η−1‖∇u‖2L∞(Q3) + ‖u‖L∞(Q3))(t − t0).

Choosing
η = (ε + ‖∇u‖L∞(Q3))

γ
2+1(t − t0)

1
2 ,

we obtain,

u(t, 0) − u(t0, 0) ≤ C(ε + ‖∇u‖L∞(Q3))
γ
2+1(t − t0)

1
2 + C(ε + ‖∇u‖L∞(Q3))

γ‖u‖L∞(Q3)(t − t0).

This finishes the proof for γ > 0 as well.

4 Hölder estimates for the spatial gradients
In this section, we assume that γ > −1, so that Corollary 2.4 and Lemma 3.1 hold, that is, the solution of (1.3)
in Q2 has uniform interior Lipschitz estimates in x and uniform interior Hölder estimates in t, both of which
are independent of ε ∈ (0, 1). For ρ, r > 0, we denote

Qr = Br × (−r2, 0], Qρ
r = Br × (−ρ−γr2, 0].

This same family of cylinders Qρ
r was used in [8]. They are the natural ones that correspond to the two-

parameter family of scaling of the equation. Indeed, if u solves (1.3) in Qρ
r andwe let v(x, t) = 1

rρ u(rx, r
2ρ−γ t),

then
vt(t, x) = (|∇v|2 + ε2ρ−2)

γ
2 (∆v + (p − 2)

vivj
|∇v|2 + ε2ρ−2

vij) in Q1.

If we choose ρ ≥ ‖∇u‖L∞(Q1) + 1, we may assume that the solution of (1.3) satisfies |∇u| ≤ 1 in Q1.
We are going to show that ∇u is Hölder continuous in space-time at the point (0, 0). The idea of the proof

in this step is similar to that in [14]. First we show that if the projection of ∇u onto the direction e ∈ 𝕊n−1 is
away from 1 in a positive portion of Q1, then ∇u ⋅ e has improved oscillation in a smaller cylinder.

Lemma 4.1. Let u be a smooth solution of (1.3) with ε ∈ (0, 1) such that |∇u| ≤ 1 in Q1. For every 1
2 < ℓ < 1

and μ > 0, there exists τ1 ∈ (0, 14 ) depending only on μ, n and there exist τ, δ > 0 depending only on n, p, γ, μ
and ℓ such that for arbitrary e ∈ 𝕊n−1 if

󵄨󵄨󵄨󵄨{(x, t) ∈ Q1 : ∇u ⋅ e ≤ ℓ}󵄨󵄨󵄨󵄨 > μ|Q1|,

then
∇u ⋅ e < 1 − δ in Q1−δ

τ

and Q1−δ
τ ⊂ Qτ1 .

Proof. Let
aij(q) = (|q|2 + ε2)

γ
2 (δij + (p − 2)

qiqj
|q|2 + ε2

), q ∈ ℝn , (4.1)

and denote
aij,m =

∂aij
∂qm

.

Differentiating (1.3) in xk, we have

(uk)t = aij(uk)ij + aij,muij(uk)m .

Then
(∇u ⋅ e − ℓ)t = aij(∇u ⋅ e − ℓ)ij + aij,muij(∇u ⋅ e − ℓ)m ,
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and for
v = |∇u|2

we have
vt = aijvij + aij,muijvm − 2aijukiukj .

For ρ = ℓ4 , let
w = (∇u ⋅ e − ℓ + ρ|∇u|2)+.

Then in the region Ω+ = {(x, t) ∈ Q1 : w > 0} we have

wt = aijwij + aij,muijwm − 2ρaijukiukj .

Since |∇u| > ℓ2 in Ω+, we have

|aij,m| ≤ {
c(p, n, γ)ℓ−1 if γ ≥ 0,
c(p, n, γ)ℓγ−1 if γ < 0,

in Ω+, where c(p, n, γ) is a positive constant depending only on p, n and γ. By the Cauchy–Schwarz inequality,
it follows that

wt ≤ aijwij + c1(ℓ)|∇w|2 in Ω+,

where

c1(ℓ) = {
c0ℓ−γ−3 if γ ≥ 0,
c0ℓ2γ−3 if γ < 0

for some constant c0 > 0 depending only on p, γ and n. Therefore, it satisfies in the viscosity sense that

wt ≤ ãijwij + c1(ℓ)|∇w|2 in Q1,

where

ãij(x) = {
aij(∇u(x)) if x ∈ Ω+,
δij elsewhere.

Notice that since ℓ ∈ (12 , 1), the coefficient ãij is uniformly elliptic with ellipticity constants depending only
on p and γ. We can choose c2(ℓ) > 0 depending only on p, γ, n and ℓ such that if we let

W = 1 − ℓ + ρ

and
w = 1

c2
(1 − ec2(w−W)),

then we have
wt ≥ ãijwij in Q1

in the viscosity sense. SinceW ≥ supQ1 w, we obtain w ≥ 0 in Q1.
If ∇u ⋅ e ≤ ℓ, then w ≥ (1 − ec2(ℓ−1))/c2. Therefore, it follows from the assumption that

󵄨󵄨󵄨󵄨󵄨󵄨{(x, t) ∈ Q1 : w ≥
(1 − ec2(ℓ−1))

c2
}
󵄨󵄨󵄨󵄨󵄨󵄨 > μ|Q1|.

By [14, Proposition 2.3], there exist τ1 > 0 depending only on μ and n, and ν > 0 depending only on μ, ℓ,
n, γ and p such that

w ≥ ν in Qτ1 .

Meanwhile, we have
w ≤ W − w.

This implies that
W − w ≥ ν in Qτ1 .
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Therefore, we have
∇u ⋅ e + ρ|∇u|2 ≤ 1 + ρ − ν in Qτ1 .

Since |∇u ⋅ e| ≤ |∇u|, we have
∇u ⋅ e + ρ(∇u ⋅ e)2 ≤ 1 + ρ − ν in Qτ1 .

Therefore, remarking that ν ≤ 1 + ρ, we have

∇u ⋅ e ≤
−1 + √1 + 4ρ(1 + ρ − ν)

2ρ ≤ 1 − δ in Qτ1

for some δ > 0 depending only on p, γ, μ, ℓ and n. Finally, we can choose τ = τ1 if γ < 0 and τ = τ1(1 − δ)γ/2

if γ ≥ 0 such that Q1−δ
τ ⊂ Qτ1 .

Note that our choice of τ and δ above implies that

τ < (1 − δ)
γ
2 when γ ≥ 0.

In the rest of the paper, we will choose τ even smaller such that

τ < (1 − δ)1+γ for all γ > −1. (4.2)

This fact will be used in the proof of Theorem 4.8.
In case we can assume that Lemma 4.1 holds in all directions e ∈ ∂B1, then it effectively implies a reduc-

tion in the oscillation of ∇u in a smaller parabolic cylinder. If such an improvement of oscillation takes place
at all scales, it leads to the Hölder continuity of ∇u at (0, 0) by iteration and scaling. The following corollary
describes this favorable case in which the assumption of the previous lemma holds in all directions.

Corollary 4.2. Let u be a smooth solution of (1.3) with ε ∈ (0, 1) such that |∇u| ≤ 1 in Q1. For every 0 < ℓ < 1
and μ > 0, there exist τ ∈ (0, 14 ) depending only on μ and n, and δ > 0 depending only on n, p, γ, μ and ℓ, such
that for every nonnegative integer k ≤ log ε/ log(1 − δ) if

󵄨󵄨󵄨󵄨{(x, t) ∈ Q
(1−δ)i
τi : ∇u ⋅ e ≤ ℓ(1 − δ)i}󵄨󵄨󵄨󵄨 > μ

󵄨󵄨󵄨󵄨Q
(1−δ)i
τi
󵄨󵄨󵄨󵄨 for all e ∈ 𝕊n−1 and i = 0, . . . , k, (4.3)

then
|∇u| < (1 − δ)i+1 in Q(1−δ)

i+1
τi+1 for all i = 0, . . . , k.

Remark 4.3. Note that we can further impose on δ that δ < 1
2 and δ < 1 − τ.

Proof. When i = 0, it follows from Lemma 4.1 that ∇u ⋅ e < 1 − δ in Qτ for all e ∈ 𝕊n−1. This implies that
|∇u| < 1 − δ in Q1−δ

τ .
Suppose this corollary holds for i = 0, . . . , k − 1. We are going prove it for i = k. Let

v(x, t) = 1
τk(1 − δ)k

u(τkx, τ2k(1 − δ)−kγ t).

Then v satisfies

vt = (|∇v|2 +
ε2

(1 − δ)2k
)

γ
2 (∆v + (p − 2)

vivj
|∇v|2 + ε2(1 − δ)−2k

vij) in Q1.

By the induction hypothesis, we also know that |∇v| ≤ 1 in Q1, and
󵄨󵄨󵄨󵄨{(x, t) ∈ Q1 : ∇v ⋅ e ≤ ℓ}󵄨󵄨󵄨󵄨 > μ|Q1| for all e ∈ 𝕊n−1.

Notice that ε ≤ (1 − δ)k. Therefore, by Lemma 4.1 we have

∇v ⋅ e ≤ 1 − δ in Q1−δ
τ for all e ∈ 𝕊n−1.

Hence, |∇v| ≤ 1 − δ in Q1−δ
τ . Consequently,

|∇u| < (1 − δ)k+1 in Q(1−δ)
k+1

τk+1 .
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Unless∇u(0, 0) = 0, the above iterationwill inevitably stop at some step. There will be a first value of kwhere
the assumptions of Corollary 4.2 do not hold in some direction e ∈ 𝕊n−1. This means that ∇u is close to some
fixed vector in a large portion of Q(1−δ)

k

τk . We then prove that u is close to some linear function, fromwhich the
Hölder continuity of ∇u will follow by applying a result from [25].

Having ∇u close to a vector e for most points tells us that for every fixed time t the function u(x, t)will be
approximately linear. However, it does not say anything about how u varies with respect to time.Wemust use
the equation in order to prove that the function u(x, t) will be close to some linear function uniformly in t.
This is the main purpose of the following set of lemmas.

Lemma 4.4. Let u ∈ C(Q1) be a smooth solution of (1.3) with γ > −1 and ε ∈ (0, 1) such that |∇u| ≤ M in Q1.
Let A be a positive constant. Assume that for all t ∈ [−1, 0] we have

oscB1 u( ⋅ , t) ≤ A.

Then

oscQ1 u ≤ {
CA if γ ≥ 0,
C(A + A1+γ) if − 1 < γ < 0,

where C is a positive constant depending only on M, γ, p and the dimension n.

Proof. When γ ≥ 0, for the aij in (4.1) we have |aij| ≤ Λ := (M2 + 1)γ/2max(p − 1, 1), and therefore the con-
clusion follows from the same proof of [14, Lemma 4.3].

When γ ∈ (−1, 0), we choose different comparison functions from [14]. Let

w(x, t) = a + ΛA1+γ t + 2A|x|β ,
w(x, t) = a − ΛA1+γ t − 2A|x|β ,

where β = (2 + γ)/(1 + γ) and Λ is to be fixed later. As far as a and a are concerned, a is chosen so that
w( ⋅ , −1) ≥ u( ⋅ , −1) in B1 andw(x̄, −1) = u(x̄, −1) for some x̄ ∈ B1, and a is chosen so thatw( ⋅ , −1) ≤ u( ⋅ , −1)
in B1 and w(x, −1) = u(x, −1) for some x ∈ B1. This implies that

a − a = u(x̄, −1) − u(x, −1) + 2ΛA1+γ − 2A|x̄|2 − 2A|x|2 ≤ A + 2ΛA1+γ .

Notice that β > 2 since γ ∈ (−1, 0). We now remark that if Λ is chosen as Λ = (2β)γ+1(β − 1)pn2 + 1, then
the first inequality

ΛA1+γ ≤ ((2Aβ|x|β−1)2 + ε2)
γ
2 ⋅ pn2 ⋅ 2Aβ(β − 1)|x|β−2 ≤ (2β)γ+1(β − 1)pn2A1+γ

(we used that γ < 0) cannot hold true for x ∈ B1. This implies that w is a strict supersolution of the equation
satisfied by u. Similarly, w is a strict subsolution.

We claim that
w ≥ u in Q1 and w ≤ u in Q1.

We only justify the first inequality since we can proceed similarly to get the second one. Suppose that the first
inequality is false. Let m = − infQ1 (w − u) > 0 and (x0, t0) ∈ Q1 be such that m = u(x0, t0) − w(x0, t0). Then
w + m ≥ u in Q1 and w(x0, t0) + m = u(x0, t0). By the choice of ā, we know that t0 > −1. If x0 ∈ ∂B1, then

2A = (w(x0, t0) + m) − (w(0, t0) + m) ≤ u(x0, t0) − u(0, t0) ≤ oscB1 u( ⋅ , t0) ≤ A,

which is impossible. Therefore, x0 ∈ B1. But this is not possible since w is a strict supersolution of the equa-
tion satisfied by u. This proves the claim.

Therefore, we have

oscQ1 u ≤ sup
Q1

w − inf
Q1

w ≤ ā − a + 4A = 2ΛAγ+1 + 5A.
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Lemma 4.5. Let u ∈ C(Q1) be a smooth solution of (1.3) with γ ∈ ℝ and ε ∈ (0, 1). Let e ∈ 𝕊n−1 and 0 < δ < 1
8 .

Assume that for all t ∈ [−1, 0] we have

oscx∈B1 (u(x, t) − x ⋅ e) ≤ δ.

Then
osc(x,t)∈Q1 (u(x, t) − x ⋅ e) ≤ Cδ,

where C is a positive constant depending only on γ, p and the dimension n.

Proof. Let

w(x, t) = a + x ⋅ e + Λδt + 2δ|x|2,
w(x, t) = a + x ⋅ e − Λδt − 2δ|x|2,

where Λ > 0will be fixed later, a is chosen so that w( ⋅ , −1) ≥ u( ⋅ , −1) in B1 and w(x̄, −1) = u(x̄, −1) for some
x̄ ∈ B1, and a is chosen so thatw( ⋅ , −1) ≤ u( ⋅ , −1) in B1 andw(x, −1) = u(x, −1) for some x ∈ B1. This implies
that

a − a = u(x̄, −1) − x̄ ⋅ e − (u(x, −1) − x ⋅ e) + 2Λδ − 2δ|x̄|2 − 2δ|x|2 ≤ (2Λ + 1)δ.

For every x ∈ B1 and t ∈ [−1, 0], since δ < 1
8 , we have

|∇w(x, t)| ≥ |e| − 4δ|x| ≥ 12 , |∇w(x, t)| ≥ |e| − 4δ|x| ≥ 12 .

Similarly, |∇w(x, t)| ≤ 3
2 and |∇w(x, t)| ≤ 3

2 . Therefore, using the notation from (4.1), there is a constant A0
(depending on p and γ) so that

aij(∇w(x, t)) ≤ A0I and aij(∇w(x, t)) ≤ A0I.

We choose Λ = 5nA0. We claim that

w ≥ u in Q1 and w ≤ u in Q1.

We only justify the first inequality since we can proceed similarly to get the second one. Suppose that the first
inequality is false. Let m = − infQ1 (w − u) > 0 and (x0, t0) ∈ Q1 be such that m = u(x0, t0) − w(x0, t0). Then
w + m ≥ u in Q1 and w(x0, t0) + m = u(x0, t0). By the choice of ā, we know that t0 > −1. If x0 ∈ ∂B1, then

2δ = (w(x0, t0) + m) − x0 ⋅ e − (w(0, t0) + m)
≤ u(x0, t0) − x0 ⋅ e − u(0, t0)
≤ oscx∈B1 (u(x, t0) − x ⋅ e)
≤ δ,

which is impossible. Hence, x0 ∈ B1. Therefore, we have the classical relations

u(x0, t0) = w(x0, t0) + m,
∇u(x0, t0) = ∇w(x0, t0) ∈ B3/2 \ B1/2,
D2u(x0, t0) ≤ D2w(x0, t0) = 4δI,
∂tu(x0, t0) ≥ ∂tw(x0, t0) = Λδ.

It follows that

ut(x0, t0) − aij(∇u(x0, t0))∂iju(x0, t0) ≥ wt(x0, t0) − aij(∇w(x0, t0))∂ijw(x0, t0) > 0,

which is a contradiction. This proves the claim.
Therefore, we have

osc(x,t)∈Q1 (u(x, t) − x ⋅ e) ≤ sup
Q1

(w − x ⋅ e) − inf
Q1
(w − x ⋅ e) ≤ ā − a + 4δ = (2Λ + 5)A.
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Lemma 4.6. Let η be a positive constant and let u be a smooth solution of (1.3)with γ > −1 and ε ∈ (0, 1) such
that |∇u| ≤ 1 in Q1. Assume

󵄨󵄨󵄨󵄨{(x, t) ∈ Q1 : |∇u − e| > ε0}󵄨󵄨󵄨󵄨 ≤ ε1

for some e ∈ 𝕊n−1 and two positive constants ε0, ε1. Then if ε0 and ε1 are sufficiently small, there exists a
constant a ∈ ℝ such that

|u(x, t) − a − e ⋅ x| ≤ η for all (x, t) ∈ Q1/2.

Here, both ε0 and ε2 depend only on n, p, γ and η.

Proof. Let
f(t) := 󵄨󵄨󵄨󵄨{x ∈ B1 : |∇u(x, t) − e| > ε0}

󵄨󵄨󵄨󵄨.

By the assumptions and Fubini’s theorem, we have that ∫0−1 f(t) dt ≤ ε1. For E := {t ∈ (−1, 0) : f(t) ≥ √ε1}, we
obtain

|E| ≤ 1
√ε1
∫
E

f(t) dt ≤ 1
√ε1

0

∫
−1

f(t) dt ≤ √ε1.

Therefore, for all t ∈ (−1, 0] \ E with |E| ≤ √ε1 we have

󵄨󵄨󵄨󵄨{x ∈ B1 : |∇u(x, t) − e| > ε0}
󵄨󵄨󵄨󵄨 ≤ √ε1. (4.4)

It follows from (4.4) and Morrey’s inequality that for all t ∈ (−1, 0] \ E we have

oscB1/2 (u( ⋅ , t) − e ⋅ x) ≤ C(n)‖∇u − e‖L2n(B1) ≤ C(n)(ε0 + ε
1
4n
1 ), (4.5)

where C(n) > 0 depends only on n.
Meanwhile, since |∇u| ≤ 1 in Q1, we have that oscB1 u( ⋅ , t) ≤ 2 for all t ∈ (−1, 0]. Therefore, applying

Lemma 4.4, we have that oscQ1 u ≤ C for some constant C. Note that u(t, x) − u(0, 0) also satisfies (1.3) and

‖u(t, x) − u(0, 0)‖L∞(Q1) ≤ oscQ1 u ≤ C.

By applying Lemma 3.1 to u(t, x) − u(0, 0), we have

sup
t ̸=s, (t,x),(s,x)∈Q1

|u(t, x) − u(s, x)|
|t − s|1/2

≤ C.

Therefore, by (4.5) and the fact that |E| ≤ √ε1 we obtain

oscB1/2 (u( ⋅ , t) − e ⋅ x) ≤ C(ε0 + ε 1
4n
1 + ε

1
4
1 )

for all t ∈ (−14 , 0] (that is, including t ∈ E). If ε0 and ε1 are sufficiently small, we obtain from Lemma 4.5 that

oscQ1/2 (u − e ⋅ x) ≤ C(ε0 + ε 1
4n
1 + ε

1
4
1 ).

Hence, if ε0 and ε1 are sufficiently small, there exists a constant a ∈ ℝ such that

|u(t, x) − a − e ⋅ x| ≤ η for all (x, t) ∈ Q1/2.

Theorem 4.7 (Regularity of small perturbation solutions). Let u be a smooth solution of (1.3) in Q1. For each
β ∈ (0, 1), there exist two positive constants η (small) and C (large), both of which depend only on β, n, γ and
p, such that if |u(x, t) − L(x)| ≤ η in Q1 for some linear function L of x satisfying 1

2 ≤ |∇L| ≤ 2, then

‖u − L‖C2,β(Q1/2) ≤ C.
Proof. Since L is a solution of (1.3), the conclusion follows from [25, Corollary 1.2].

Now we are ready to prove the following Hölder gradient estimate.
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Theorem 4.8. Let u be a smooth solution of (1.3)with ε ∈ (0, 1) and γ > −1 such that |∇u| ≤ 1 in Q1. Then there
exist two positive constants α and C depending only on n, γ and p such that

|∇u(x, t) − ∇u(y, s)| ≤ C(|x − y|α + |t − s|
α

2−αγ )
for all (x, t), (y, s) ∈ Q1/2. Also, there holds

|u(x, t) − u(x, s)| ≤ C|t − s|
1+α
2−αγ

for all (x, t), (x, s) ∈ Q1/2.

Proof. We first show the Hölder estimate of ∇u at (0, 0) and the Hölder estimate in t at (0, 0).
Let η be the one from Theorem 4.7 with β = 1

2 , and for this η let ε0, ε1 be two sufficiently small positive
constants so that the conclusion of Lemma 4.6 holds. For ℓ = 1 − ε20/2 and μ = ε1/|Q1| if

󵄨󵄨󵄨󵄨{(x, t) ∈ Q1 : ∇u ⋅ e ≤ ℓ}󵄨󵄨󵄨󵄨 ≤ μ|Q1| for any e ∈ 𝕊n−1,

then
󵄨󵄨󵄨󵄨{(x, t) ∈ Q1 : |∇u − e| > ε0}󵄨󵄨󵄨󵄨 ≤ ε1.

This is because if |∇u(x, t) − e| > ε0 for some (x, t) ∈ Q1, then

|∇u|2 − 2∇u ⋅ e + 1 ≥ ε20.

Since |∇u| ≤ 1, we have

∇u ⋅ e ≤ 1 −
ε20
2 .

Therefore, if ℓ = 1 − ε20/2 and μ = ε1/|Q1|, then

{(x, t) ∈ Q1 : |∇u − e| > ε0} ⊂ {(x, t) ∈ Q1 : ∇u ⋅ e ≤ ℓ}, (4.6)

from which it follows that

󵄨󵄨󵄨󵄨{(x, t) ∈ Q1 : |∇u − e| > ε0}󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨{(x, t) ∈ Q1 : ∇u ⋅ e ≤ ℓ}󵄨󵄨󵄨󵄨 ≤ μ|Q1| ≤ ε1.

Let τ and δ be the constants from Corollary 4.2. We denote by [log ε/ log(1 − δ)] the integer part of
log ε/ log(1 − δ). Let k be either [log ε/ log(1 − δ)] or the minimum nonnegative integer such that condition
(4.3) does not hold, whichever is smaller. Then it follows from Corollary 4.2 that for all ℓ = 0, 1, . . . , k we
have

|∇u(x, t)| ≤ (1 − δ)ℓ in Q(1−δ)
ℓ

τℓ .

Then for
(x, t) ∈ Q(1−δ)

ℓ
τℓ \ Q(1−δ)ℓ+1τℓ+1

we obtain
|∇u(x, t)| ≤ (1 − δ)ℓ ≤ C(|x|α + |t|

α
2−αγ ),

where
C = 1

1 − δ and α = log(1 − δ)log τ .

Thus,
|∇u(x, t) − q| ≤ C(|x|α + |t|

α
2−αγ ) in Q1 \ Q(1−δ)

k+1
τk+1 (4.7)

for every q ∈ ℝn such that |q| ≤ (1 − δ)k. Note that when γ ≥ 0, it follows from (4.2) that

2 − αγ > 0 and α
2 − αγ <

1
2 .
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For ℓ = 0, 1, . . . , k, let
uℓ(x, t) =

1
τℓ(1 − δ)ℓ

u(τℓx, τ2ℓ(1 − δ)−ℓγ t). (4.8)

Then |∇uℓ(x, t)| ≤ 1 in Q1, and

∂tuℓ = (|∇uℓ|2 + ε2(1 − δ)−2ℓ)
γ
2 (δij + (p − 2)

∂iuℓ∂juℓ
|∇uℓ|2 + ε2(1 − δ)−2ℓ

)∂ijuℓ in Q1. (4.9)

Notice that ε2(1 − δ)−2ℓ ≤ ε2(1 − δ)−2k ≤ 1. By Lemma 4.4, we have

oscQ1 uℓ ≤ C,

and thus
oscQ(1−δ)ℓ

τℓ u ≤ Cτℓ(1 − δ)ℓ. (4.10)

Let v = uk.

Case 1: k = [log ε/ log(1 − δ)]. Then we have (1 − δ)k+1 < ε ≤ (1 − δ)k, and thus 1
2 < 1 − δ < ε(1 − δ)

−k ≤ 1.
Therefore, when ℓ = k, equation (4.9) is a uniformly parabolic quasilinear equation with smooth and
bounded coefficients. By the standard quasilinear parabolic equation theory (see, e.g., [17, Theorem 4.4,
p. 560]) and Schauder estimates, there exists b ∈ ℝn, |b| ≤ 1, such that

|∇v(x, t) − b| ≤ C(|x| + |t|
1
2 ) ≤ C(|x|α + |t|

α
2−αγ ) in Q1−δ

τ ⊂ Q1/4

and
|∂tv| ≤ C in Q1−δ

τ ⊂ Q1/4,

where C > 0 depends only on γ, p and n, and we used that α
2−αγ ≤

1
2 . Rescaling back, we have

|∇u(x, t) − (1 − δ)kb| ≤ C(|x|α + |t|
α

2−αγ ) in Q(1−δ)
k+1

τk+1 (4.11)

and
|u(x, t) − u(x, 0)| ≤ Cτ−k(1 − δ)k(γ+1)|t| in Q(1−δ)

k+1
τk+1 . (4.12)

Then we can conclude from (4.7) and (4.11) that

|∇u(x, t) − q| ≤ C(|x|α + |t|
α

2−αγ ) in Q1/2,

where C > 0 depends only on γ, p and n. From (4.12) we obtain that for |t| ≤ τ2m(1 − δ)−mγ with m ≥ k + 1,

|u(0, t) − u(0, 0)| ≤ Cτ−k(1 − δ)k(γ+1)τ2m(1 − δ)−mγ ≤ Cτm(1 − δ)m , (4.13)

where in the last inequality we have used (4.2). From (4.10) and (4.13) we have

|u(0, t) − u(0, 0)| ≤ C|t|β

for all t ∈ (−14 , 0], where β is chosen such that

τ(1 − δ) = (τ2(1 − δ)−γ)β .

That is,
β = 1 + α

2 − αγ . (4.14)

Note that β > 1
2 if γ > −2.
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Case 2: k < [log ε/ log(1 − δ)]. Then
󵄨󵄨󵄨󵄨{(x, t) ∈ Q

(1−δ)k
τk : ∇u ⋅ e ≤ ℓ(1 − δ)k}󵄨󵄨󵄨󵄨 ≤ μ

󵄨󵄨󵄨󵄨Q
(1−δ)k
τk
󵄨󵄨󵄨󵄨 for some e ∈ 𝕊n−1.

Also,
|∇u| < (1 − δ)ℓ in Q(1−δ)

ℓ
τℓ for all ℓ = 0, 1, . . . , k.

Recall v = uk as defined in (4.8), which satisfies (4.9) with ℓ = k. Then |∇v| ≤ 1 in Q1, and

󵄨󵄨󵄨󵄨{(x, t) ∈ Q1 : ∇v ⋅ e ≤ ℓ}󵄨󵄨󵄨󵄨 ≤ μ|Q1| for some e ∈ 𝕊n−1.

Consequently, using (4.6), we get

󵄨󵄨󵄨󵄨{(x, t) ∈ Q1 : |∇v − e| > ε0}󵄨󵄨󵄨󵄨 ≤ ε1.

It follows from Lemma 4.6 that there exists a ∈ ℝ such that

|v(x, t) − a − e ⋅ x| ≤ η for all (x, t) ∈ Q1/2.

By Theorem 4.7, there exists b ∈ ℝn such that

|∇v − b| ≤ C(|x| + √|t|) for all (x, t) ∈ Q1−δ
τ ⊂ Q1/4

and
|∂tv| ≤ C in Q1−δ

τ ⊂ Q1/4.

Rescaling back, we have

|∇u(x, t) − (1 − δ)kb| ≤ C(|x|α + |t|
α

2−αγ ) in Q(1−δ)
k+1

τk+1
and

|u(x, t) − u(x, 0)| ≤ Cτ−k(1 − δ)k(γ+1)|t| in Q(1−δ)
k+1

τk+1 .

Together with (4.7) and (4.10), we can conclude as in case 1 that

|∇u(x, t) − q| ≤ C(|x|α + |t|
α

2−αγ ) in Q1/2

and
|u(0, t) − u(0, 0)| ≤ C|t|β

for all t ∈ (−14 , 0], where C > 0 depends only on γ, p and n.
In conclusion, we have proved that there exist q ∈ ℝn with |q| ≤ 1, and two positive constants α and C

depending only on γ, p and n such that

|∇u(x, t) − q| ≤ C(|x|α + |t|
α

2−αγ ) for all (x, t) ∈ Q1/2

and
|u(0, t) − u(0, 0)| ≤ C|t|β for t ∈ (−14 , 0],

where β is given in (4.14). Then the conclusion follows from standard translation arguments.

5 Approximation
As mentioned in the introduction, the viscosity solutions to

ut = |∇u|γ(∆u + (p − 2)|∇u|−2uiujuij) in Q1 (5.1)
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with γ > −1 and p > 1 fall into the general framework studied by Ohnuma and Sato in [21], which is an
extension of the work of Barles and Georgelin [6] and Ishii and Souganidis [13] on the viscosity solutions of
singular/degenerate parabolic equations. Let us recall from [21] the definition of viscosity solutions to (5.1).

We denote
F(∇u, ∇2u) = |∇u|γ(∆u + (p − 2)|∇u|−2uiujuij).

Let F be the set of functions f ∈ C2([0,∞)) satisfying

f(0) = f 󸀠(0) = f 󸀠󸀠(0) = 0, f 󸀠󸀠(r) > 0 for all r > 0

and
lim
|x|→0, x ̸=0

F(∇g(x), ∇2g(x)) = lim
|x|→0, x ̸=0

F(−∇g(x), −∇2g(x)) = 0, where g(x) = f(|x|).

This set F is not empty when γ > −1 and p > 1 since f(r) = rβ ∈ F for any β > max((γ + 2)/(γ + 1), 2). More-
over, if f ∈ F, then λf ∈ F for all λ > 0.

Because equation (5.1) may be singular or degenerate, one needs to choose the test functions prop-
erly when defining viscosity solutions. A function φ ∈ C2(Q1) is admissible, which is denoted as φ ∈ A, if
for every ẑ = (x̂, ̂t) ∈ Q1 such that ∇φ(ẑ) = 0 there exist δ > 0, f ∈ F and ω ∈ C([0,∞)) satisfying ω ≥ 0 and
limr→0

ω(r)
r = 0 such that for all z = (x, t) ∈ Q1, |z − ẑ| < δ, we have

|φ(z) − φ(ẑ) − φt(ẑ)(t − ̂t)| ≤ f(|x − x̂|) + ω(|t − ̂t|).

Definition 5.1. An upper (resp. lower) semi-continuous function u in Q1 is called a viscosity subsolution
(resp. supersolution) of (5.1) if for every admissible φ ∈ C2(Q1) such that u − φ has a local maximum (resp.
minimum) at (x0, t0) ∈ Q1, the following conditions hold:

φt ≤ (resp. ≥) |∇φ|γ(∆φ + (p − 2)|∇φ|−2φiφjφij) at (x0, t0) when ∇φ(x0, t0) ̸= 0

and
φt ≤ (resp. ≥) 0 at (x0, t0) when ∇φ(x0, t0) = 0.

A function u ∈ C(Q1) is called a viscosity solution of (1.1), if it is both a viscosity subsolution and a vis-
cosity supersolution.

We shall use two properties about the viscosity solutions defined above. The first one is the comparison
principle for (5.1), which is [21, Theorem 3.1].

Theorem 5.2 (Comparison principle). Let u and v be a viscosity subsolution and a viscosity supersolution
of (5.1) in Q1, respectively. If u ≤ v on ∂pQ1, then u ≤ v in Q1.

The second one is the stability of viscosity solutions of (5.1), which is an application of [21, Theorem 6.1]. Its
application to equation (5.1) with γ = 0 and 1 < p ≤ 2 is given in [21, Proposition 6.2] with detailed proof. It
is elementary to check that it applies to (5.1) for all γ > −1 and all p > 1 (which was also pointed out in [21]).

Theorem 5.3 (Stability). Let {uk} be a sequence of bounded viscosity subsolutions of (1.3) in Q1 with εk ≥ 0
such that εk → 0 and uk converges locally uniformly to u in Q1. Then u is a viscosity subsolution of (5.1) in Q1.

Nowwe shall use the solution of (1.3) to approximate the solution of (5.1). Since p > 1, the following lemma
ensues from classical quasilinear equations theory (see, e.g., [17, Theorem 4.4, p. 560]) and the Schauder
estimates.

Lemma 5.4. Let g ∈ C(∂pQ1). For ε > 0, there exists a unique solution uε ∈ C∞(Q1) ∩ C(Q1) of (1.3)with p > 1
and γ ∈ ℝ such that uε = g on ∂pQ1.

The last ingredient we need in the proof of Theorem 1.1 is the following continuity estimate up to the bound-
ary for the solutions of (1.3). Its proof is given in Appendix A. For two real numbers a and b, we denote
a ∨ b = max(a, b) and a ∧ b = min(a, b).
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Theorem 5.5 (Boundary estimates). Let u ∈ C(Q1) ∩ C∞(Q1) be a solution of (1.3) with γ > −1 and ε ∈ (0, 1).
Let φ := u|∂pQ1 and let ρ be a modulus of continuity of φ. Then there exists another modulus of continuity ρ∗

depending only on n, γ, p, ρ and ‖φ‖L∞(∂pQ1) such that

|u(x, t) − u(y, s)| ≤ ρ∗(|x − y| ∨ √|t − s|)

for all (x, t), (y, s) ∈ Q1.

Proof of Theorem 1.1. GivenTheorem4.8, Theorem5.2, Theorem5.3, Lemma5.4 andTheorem5.5, the proof
of Theorem 1.1 is identical to that of [14, Theorem 1].

A Proof of Theorem 5.5
Wewill adapt some arguments in [7] to prove Theorem5.5. In the following, c denotes some positive constant
depending only on n, γ and p, which may vary from line to line. Denote

Fε(∇u, ∇2u) = (|∇u|2 + ε2)
γ
2 (δij + (p − 2)

uiuj
|∇u|2 + ε2

)uij .

Lemma A.1. For every z ∈ ∂B1, there exists a function Wz ∈ C(B1) such that Wz(z) = 0 and Wz > 0 in B1 \ {z},
and

Fε(∇Wz , ∇2Wz) ≤ −1 in B1.

Proof. Let z ∈ ∂B1. Let f(r) = √(r − 1)+ and wz(x) = f(|x − 2z|). Then for x ∈ B1 we have

Fε(∇wz , ∇2wz) = (f 󸀠2 + ε2)
γ
2 ((1 + (p − 2) f 󸀠2

f 󸀠2 + ε2
)f 󸀠󸀠 + n − 1
|x − 2z| f

󸀠).

Then there exists δ > 0 depending only on n, γ and p such that for x ∈ B1 ∩ B1+δ(2z) we have

Fε(∇wz , ∇2wz) ≤ −1.

For
σ = 2n

min(p − 1, 1) + 2 and a > 0,

let
Gz(x) = a(2σ −

1
|x − 2z|σ ).

Then Gz(x) ≥ a(2σ − 1) in B1. Also, for r = |x − 2z| and x ∈ B1 we have

Fε(∇Gz , ∇2Gz) = a(σ2r−2σ−2 + ε2)
γ
2 ((1 + (p − 2)σ

2

σ2 + ε2r2σ+2
)σ(−σ − 1)r−σ−2 + (n − 1)σr−σ−2)

≤ −
a
2 σr
−σ−2(σ2r−2σ−2 + ε2)

γ
2

≤
{{{
{{{
{

−
a
23
−σ−2−γ(σ+1)σ1+γ if γ ≥ 0,

−
a
23
−σ−2(σ2 + 1)

γ
2 σ if γ < 0,

where in the first inequality we used the choice of σ. Then we choose a such that

a(2σ − 1
|1 + δ|σ ) =

√ δ
2 .

Since wz(z) = 0 and Gz(z) > 0, the function

Wz(x) = {
Gz(x) for x ∈ B1, |x − 2z| ≥ 1 + δ,
min(Gz(x), wz(x)) for x ∈ B1, |x − 2z| ≤ 1 + δ,
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agrees withwz in a neighborhood of z (relative to B1). Also, because of the choice of a, the functionWz agrees
with Gz when x ∈ B1 and |x − 2z| ≥ 1 + δ̃ for some δ̃ ∈ (0, δ). Moreover,

Fε(∇Wz , ∇2Wz) ≤ −κ

for some constant κ > 0 depending only on n, γ and p. By multiplying a large positive constant to Wz, we
finish the proof of this lemma.

Lemma A.2. For every (z, τ) ∈ ∂pQ1, there exists Wz,τ ∈ C(Q1) such that Wz,τ(z, τ) = 0, Wz,τ > 0 in Q1 \ {(z, τ)}
and

∂tWz,τ − Fε(∇Wz,τ , ∇2Wz,τ) ≥ 1 in Q1.

Proof. For τ > −1 and x ∈ ∂B1,

Wz,τ(x, t) =
(t − τ)2

2 + 2Wz

is a desired function, whereWz is the one from Lemma A.1. For τ = −1 and x ∈ B1, we let

Wz,τ(x, t) = A(t + 1) + |x − z|β ,

where
β = max( γ + 2γ + 1 , 2).

If we choose A > 0 large, which depends only on n, γ and p, thenWz,τ will be a desired function.

For two real numbers a and b, we denote a ∨ b = max(a, b) and a ∧ b = min(a, b).

Theorem A.3. Let u ∈ C(Q1) ∩ C∞(Q1) be a solution of (1.3)with γ > −1 and ε ∈ (0, 1). Let φ := u|∂pQ1 and let
ρ be a modulus of continuity of φ. Then there exists another modulus of continuity ρ∗ depending only on n, γ, p
and ρ such that

|u(x, t) − u(y, s)| ≤ ρ̃(|x − y| ∨ |t − s|)

for all (x, t) ∈ Q1 and (y, s) ∈ ∂pQ1.

Proof. For every κ > 0 and (z, τ) ∈ ∂pQ1, let

Wκ,z,τ(x, t) = φ(z, τ) + κ +MκWz,τ(x, t),

where Mκ > 0 is chosen so that

φ(z, τ) + κ +MκWz,τ(y, s) ≥ φ(y, s) for all (y, s) ∈ ∂pQ1.

Indeed,
Mk = inf

(y,s)∈∂pQ1 , (y,s) ̸=(z,τ)

(ρ(|z − y| ∨ |τ − s|) − κ)+

Wz,τ(y, s)

would suffice, and is independent of the choice of (z, τ). Finally, let

W(x, t) = inf
κ>0, (z,τ)∈∂pQ1

Wκ,z,τ(x, t).

Note that for every κ > 0 and (z, τ) ∈ ∂pQ1,

W(x, t) − φ(z, τ) ≤ Wκ,z,τ(x, t) − φ(z, τ)
≤ κ +MκWz,τ(x, t)
≤ κ +Mκ(Wz,τ(x, t) −Wz,τ(z, τ))
≤ κ +Mκω(|z − x| ∨ |τ − t|),

where ω is the modulus of continuity forWz,τ, which is evidently independent of (z, τ). Let

ρ̃(r) = inf
κ>0
(κ +Mκω(r))
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for all r ≥ 0. Then ρ̃ is a modulus of continuity, and

W(x, t) − φ(z, τ) ≤ ρ̃(|z − x| ∨ |τ − t|) for all (x, t) ∈ Q1, (z, τ) ∈ ∂pQ1.

By Lemma A.2, Wκ,z,τ is a supersolution of (1.3) for every κ > 0 and (z, τ) ∈ ∂pQ1, and therefore W is also
a supersolution of (1.3). By the comparison principle,

u(x, t) − φ(z, τ) ≤ W(x, t) − φ(z, τ) ≤ ρ̃(|z − x| ∨ |τ − t|)

for all (x, t) ∈ Q1 and (z, τ) ∈ ∂pQ1.
Similarly, one can show that u(x, t) − φ(z, τ) ≥ −ρ̃(|z − x| ∨ |τ − t|) for all (x, t) ∈ Q1 and (z, τ) ∈ ∂pQ1.

This finishes the proof of this theorem.

Proof of Theorem 5.5. By the maximum principle, we have that

M := ‖u‖L∞(Q1) = ‖φ‖L∞(∂pQ1).

Let (x, t), (y, s) ∈ Q1, and assume that t ≥ s. Let x0 be such that |x − x0| = 1 − |x| = r. Let ρ̃ be the one from the
conclusion of TheoremA.3.Without loss of generality, wemay assume that 2M + 2 ≥ ρ̃(r) ≥ r for all r ∈ [0, 2]
(e.g., replacing ρ̃(r) by ρ̃(r) + r), and ρ̃(r) ≤ 2M + 2 for all r ≥ 2.

In the following, if γ ∈ (−1, 0), then we will assume first that

r1+γ(2M + 2)−γ ≤ 1,

and will deal with the other situation in the end of this proof. Under the above assumption, we have that
r2+γ(ρ̃(2r))−γ ≤ r2+γ(2M + 2)−γ ≤ rwhen γ <0, and r2+γ(ρ̃(2r))−γ ≤ r2+γ(ρ̃(r))−γ ≤ r2 ≤ rwhen γ ≥ 0. Thus, for
all γ > −1 we have

r2+γ(ρ̃(2r))−γ ≤ r.

We will deal with the situation that γ ∈ (−1, 0) and r1+γ(2M + 2)−γ ≥ 1 at the very end of the proof.

Case 1: r2+γ(ρ̃(2r))−γ ≤ 1 + t. If |y − x| ≤ r
2 and |s − t| ≤ r

2+γ(ρ̃(2r))−γ/4, then we do a scaling:

v(z, τ) =
u(rz + x, r2+γ(ρ̃(2r))−γτ + t) − u(x0, t)

ρ̃(2r) .

Then
vτ = (|∇v|2 + ε2r2 ρ̃(2r)−2)

γ
2 (δij + (p − 2)

vivj
|∇u|2 + ε2r2 ρ̃(2r)−2

)uij in Q1.

Notice that εr/ρ̃(2r) ≤ εr/ρ̃(r) ≤ ε < 1 and r2+γ(ρ̃(2r))−γ ≤ r. Thus, |v(z, τ)| ≤ 1 for (z, τ) ∈ Q1. By applying
Corollary 2.4 and Lemma 3.1 to v and rescaling to u, there exists α > 0 depending only on γ such that v is Cα

in (x, t), and there exists C > 0 depending only on n, γ and p such that

|u(y, s) − u(x, s)| ≤ Cρ̃(2r) |x − y|
α

rα

and
|u(x, t) − u(x, s)| ≤ Cρ̃(2r)1+αγ |t − s|

α

rα(2+γ)
,

Therefore,
|u(y, s) − u(x, t)| ≤ Cρ̃(2r) |x − y|

α

rα
+ Cρ̃(2r)1+αγ |t − s|

α

rα(2+γ)
.

Since |y − x| ≤ r
2 and |s − t| ≤ r2+γ(ρ̃(2r))−γ/4 ≤ r

4 , we have 2
−m−1r < |x − y| ∨ |t − s| ≤ 2−mr for some integer

m ≥ 1. Then

|u(y, s) − u(x, t)| ≤ C ρ̃(2
m+2(|x − y| ∨ |t − s|))

2mα + C ρ̃(2
m+2(|x − y| ∨ |t − s|))1+αγ

2mαrα(1+γ)

≤ C ρ̃(2
m+2(|x − y| ∨ |t − s|)) + ρ̃(2m+2(|x − y| ∨ |t − s|))1+αγ

2mα .
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Notice that
sup
m≥1

ρ̃(2m+2r) + ρ̃(2m+2r)1+αγ
2mα → 0 as r → 0.

Therefore, we can choose a modulus of continuity ρ1 such that

ρ1(r) ≥ C sup
m≥1

ρ̃(2m+2r) + ρ̃(2m+2r)1+αγ
2mα for all r ≥ 0,

and we have
|u(y, s) − u(x, t)| ≤ ρ1(|x − y| ∨ |t − s|).

If |y − x| ≥ r
2 , then

|u(x, t) − u(y, s)| ≤ |u(x, t) − u(x0, t)| + |u(x0, t) − u(y, s)|
≤ ρ̃(r) + ρ̃(|x0 − y| ∨ |t − s|)
≤ ρ̃(2(|x − y| ∨ |t − s|)) + ρ̃((|x − y| + r) ∨ |t − s|)
≤ ρ̃(2(|x − y| ∨ |t − s|)) + ρ̃(3(|x − y| ∨ |t − s|))
≤ 2ρ̃(3(|x − y| ∨ |t − s|)).

If |x − y| ≤ r
2 and |s − t| ≥ r

2+γ(ρ̃(2r))−γ/4, then

r ≤ 4
1

2+γ (2M + 2) γ
2+γ |s − t| 12+γ

when γ ≥ 0, and r ≤ 2|s − t|1/2 when γ ≤ 0. Then one can show similar to the above that

|u(x, t) − u(y, s)| ≤ 2ρ̃(c(|x − y| ∨ |t − s|
1
2 ∨ |s − t|

1
2+γ ))

≤ ρ2(|x − y| ∨ |t − s|),

where ρ2(r) = 2ρ̃(cr1/2) or ρ2(r) = 2ρ̃(cr1/(2+γ)) depending on whether γ ≥ 0 or γ ≤ 0 is a modulus of conti-
nuity, c is a positive constant depending only on M and γ.

This finishes the proof in this first case.

Case 2: r2+γ(ρ̃(2r))−γ ≥ 1 + t. Then let λ = √|t + 1| when γ ≥ 0, and λ = (2M + 2)γ/(2+γ)|t + 1|1/(2+γ) when
γ ∈ (−1, 0). Then one can check that λ ≤ r.

If |y − x| ≤ λ
2 and |s − t| ≤ λ

2+γ(ρ̃(2λ))−γ/4, let

v(z, τ) =
u(λz + x, λ2+γ(ρ̃(2λ))−γτ + t) − u(x0, t)

ρ̃(2λ) for (z, τ) ∈ Q1.

Then
vτ = (|∇v|2 + ε2r2 ρ̃(2λ)−2)

γ
2 (δij + (p − 2)

vivj
|∇u|2 + ε2λ2 ρ̃(2λ)−2

)uij in Q1.

Notice that λ2+γ(ρ̃(2λ))−γ ≤ λ2 ≤ λ when γ ≥ 0, and λ2+γ(ρ̃(2λ))−γ ≤ λr1+γ(ρ̃(2r))−γ ≤ λ when γ ∈ (−1, 0).
Thus, |v(z, τ)| ≤ 1 for (z, τ) ∈ Q1. Also, ελ/ρ̃(2λ) ≤ ελ/ρ̃(λ) ≤ ε < 1. Then, by arguments similar to the ones
in case 1, we have

|u(y, s) − u(x, t)| ≤ ρ1(|x − y| ∨ |t − s|).

If |y − x| ≥ λ
2 , then |t + 1| ≤ c(|x − y|

2 ∨ |x − y|2+γ) ≤ c|x − y| for some c > 0 depending only on M and γ.
Therefore,

|u(x, t) − u(y, s)| ≤ |u(x, t) − u(x, −1)| + |u(x, −1) − u(y, s)|
≤ ρ̃(|t + 1|) + ρ̃(|x − y| ∨ |1 + s|)
≤ ρ̃(c|x − y|) + ρ̃((|x − y|) ∨ |1 + t|)
≤ ρ̃(c(|x − y| ∨ |t − s|)) + ρ̃(c|x − y| ∨ |t − s|)
= 2ρ̃(c(|x − y| ∨ |t − s|))
≤ ρ2(|x − y| ∨ |t − s|).



866 | C. Imbert, T. Jin and L. Silvestre, Hölder gradient estimates for parabolic equations

If |x − y| ≤ λ
2 and |s − t| ≥ λ

2+γ(ρ̃(2λ))−γ/4, then

λ ≤ 4
1

2+γ (2M + 2) γ
2+γ |s − t| 12+γ

when γ ≥ 0, and λ ≤ 2|s − t|1/2 when γ ≤ 0. Then one can show similar to the above that

|u(x, t) − u(y, s)| ≤ |u(x, t) − u(x, −1)| + |u(x, −1) − u(y, s)|
≤ ρ̃(|t + 1|) + ρ̃(|x − y| ∨ |1 + s|)

≤ ρ̃(c(|s − t|
2

2+γ ∨ |s − t| 2+γ2 )) + ρ̃((|x − y|) ∨ |1 + t|)
≤ ρ̃(c(|s − t|

1
2+γ ∨ |s − t| 12 )) + ρ̃(c(|s − t| 12+γ ∨ |s − t| 12 ))

≤ ρ2(|x − y| ∨ |t − s|).

This finishes the proof in this second case.
In the end, we deal with the situation that γ ∈ (−1, 0) and r1+γ(2M + 2)−γ ≥ 1. Then we have r ≥ c for

c = (2M + 2)γ/(1+γ). Let
λ = (2M + 2)

γ
2+γ |t + 1| 12+γ .

There exists μ > 0 depending only on M and γ such that if |t + 1| ≤ μ, then λ ≤ c, c2+γ(ρ̃(2c))−γ ≥ 1 + t and
λ1+γ(2M + 2)−γ ≤ 1. Then, for t ≤ −1 + μ, the same arguments as in case 2 work without any change.

Now the final case left is that (x, t) ∈ B1−c × [−1 + μ, 0]. Then we only need to consider that

(y, s) ∈ B1−c/2 × [−1 +
μ
2 , 0].

It follows from Corollary 2.4 and Lemma 3.1 that there exists a modulus of continuity ρ̄ depending only on
n, γ, p and M such that

|u(x, t) − u(y, s)| ≤ ρ(|x − y| ∨ |t − s|).

This finishes the final situation.
Then ρ∗(r) := ρ1(r) + ρ2(r) + ρ̄(r) is a desired modulus of continuity. The proof of this theorem is thereby

completed.
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